四川省內(nèi)江市隆昌市隆昌市第三中學(xué)2023年中考五模數(shù)學(xué)試題含答案解析_第1頁
四川省內(nèi)江市隆昌市隆昌市第三中學(xué)2023年中考五模數(shù)學(xué)試題含答案解析_第2頁
四川省內(nèi)江市隆昌市隆昌市第三中學(xué)2023年中考五模數(shù)學(xué)試題含答案解析_第3頁
免費預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省內(nèi)江市隆昌市隆昌市第三中學(xué)2023年中考五模數(shù)學(xué)測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在測試卷卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在測試卷卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如果關(guān)于x的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.92.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.3.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.4.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣45.a(chǎn)、b互為相反數(shù),則下列成立的是()A.a(chǎn)b=1 B.a(chǎn)+b=0 C.a(chǎn)=b D.=-16.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊7.一元二次方程2x2﹣3x+1=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根8.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.9.某學(xué)校組織藝術(shù)攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設(shè)照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×510.足球運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.將函數(shù)y=3x+1的圖象沿y軸向下平移2個單位長度,所得直線的函數(shù)表達(dá)式為_____.12.不等式組的解是____.13.對于任意實數(shù)m、n,定義一種運(yùn)算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運(yùn)算,例如:3※5=3×5﹣3﹣5+3=1.請根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.14.如果小球在如圖所示的地面上自由滾動,并隨機(jī)停留在某塊方磚上,每塊方磚大小、質(zhì)地完全一致,那么它最終停留在黑色區(qū)域的概率是__________.15.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的正弦值為__.16.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.17.有4根細(xì)木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.三、解答題(共7小題,滿分69分)18.(10分)隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).19.(5分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.20.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸相交于點,與反比例函數(shù)的圖象相交于點,.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出時,的取值范圍;(3)在軸上是否存在點,使為等腰三角形,如果存在,請求點的坐標(biāo),若不存在,請說明理由.21.(10分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx22.(10分)某學(xué)校為了解學(xué)生的課余活動情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調(diào)查了學(xué)生,并請補(bǔ)全折線統(tǒng)計圖;(2)該校共有2200名學(xué)生,估計該校愛好閱讀和愛好體育的學(xué)生一共有多少人?23.(12分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.24.(14分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a(bǔ)=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a(bǔ)=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a(bǔ)=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a(bǔ)=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a(bǔ)=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a(bǔ)=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a(bǔ)=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a(bǔ)=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.2、C【答案解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【題目詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【答案點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.3、C【答案解析】測試卷分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結(jié)合所給圖形進(jìn)行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.4、B【答案解析】

利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問題.【題目詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【答案點睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.5、B【答案解析】

依據(jù)相反數(shù)的概念及性質(zhì)即可得.【題目詳解】因為a、b互為相反數(shù),所以a+b=1,故選B.【答案點睛】此題主要考查相反數(shù)的概念及性質(zhì).相反數(shù)的定義:只有符號不同的兩個數(shù)互為相反數(shù),1的相反數(shù)是1.6、B【答案解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.7、B【答案解析】測試卷分析:對于一元二次方程ax2+bx+c=0(a≠0),當(dāng)△=8、A【答案解析】

本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【題目詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【答案點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關(guān)鍵.9、D【答案解析】測試卷分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關(guān)系,根據(jù)兩個矩形的面積3倍的關(guān)系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎(chǔ)題.10、B【答案解析】測試卷解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、y=3x-1【答案解析】∵y=3x+1的圖象沿y軸向下平移2個單位長度,∴平移后所得圖象對應(yīng)的函數(shù)關(guān)系式為:y=3x+1﹣2,即y=3x﹣1.故答案為y=3x﹣1.12、【答案解析】

分別求出各不等式的解集,再求出其公共解集即可.【題目詳解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式組的解集是1<x≤1,

故答案是:1<x≤1.【答案點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).13、【答案解析】

解:根據(jù)題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【答案點睛】本題考查一元一次不等式組的整數(shù)解,準(zhǔn)確理解題意正確計算是本題的解題關(guān)鍵.14、.【答案解析】

先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【題目詳解】解:∵由圖可知,黑色方磚4塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值∴它停在黑色區(qū)域的概率是;故答案為.【答案點睛】本題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、【答案解析】

首先利用勾股定理計算出AB2,BC2,AC2,再根據(jù)勾股定理逆定理可證明∠BCA=90°,然后得到∠ABC的度數(shù),再利用特殊角的三角函數(shù)可得∠ABC的正弦值.【題目詳解】解:連接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值為.故答案為:.【答案點睛】此題主要考查了銳角三角函數(shù),以及勾股定理逆定理,關(guān)鍵是掌握特殊角的三角函數(shù).16、2.1【答案解析】

根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【題目詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質(zhì),三角形中位線的應(yīng)用,熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.17、【答案解析】

根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【題目詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【答案點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【答案解析】

(Ⅰ)利用家庭中擁有1臺移動設(shè)備的人數(shù)除以其所占百分比即可得調(diào)查的學(xué)生人數(shù),將擁有4臺移動設(shè)備的人數(shù)除以總?cè)藬?shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設(shè)備的學(xué)生人數(shù)所占比例乘以總?cè)藬?shù)1500即可求解.【題目詳解】解:(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得=3.1,∴這組數(shù)據(jù)的平均數(shù)是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學(xué)生家庭中;擁有3臺移動設(shè)備的學(xué)生人數(shù)約為410人.【答案點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【答案解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【題目詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【答案點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.20、(1);;(2)或;(3)存在,或或或.【答案解析】

(1)利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而求出點C坐標(biāo),最后用再用待定系數(shù)法求出一次函數(shù)解析式;

(2)利用圖象直接得出結(jié)論;

(3)分、、三種情況討論,即可得出結(jié)論.【題目詳解】(1)一次函數(shù)與反比例函數(shù),相交于點,,∴把代入得:,∴,∴反比例函數(shù)解析式為,把代入得:,∴,∴點C的坐標(biāo)為,把,代入得:,解得:,∴一次函數(shù)解析式為;(2)根據(jù)函數(shù)圖像可知:當(dāng)或時,一次函數(shù)的圖象在反比例函數(shù)圖象的上方,∴當(dāng)或時,;(3)存在或或或時,為等腰三角形,理由如下:過作軸,交軸于,∵直線與軸交于點,∴令得,,∴點A的坐標(biāo)為,∵點B的坐標(biāo)為,∴點D的坐標(biāo)為,∴,①當(dāng)時,則,,∴點P的坐標(biāo)為:、;②當(dāng)時,是等腰三角形,,平分,,∵點D的坐標(biāo)為,∴點P的坐標(biāo)為,即;③當(dāng)時,如圖:設(shè),則,在中,,,,由勾股定理得:,,解得:,,∴點P的坐標(biāo)為,即,綜上所述,當(dāng)或或或時,為等腰三角形.【答案點睛】本題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,利用圖象確定函數(shù)值滿足條件的自變量的范圍,等腰三角形的性質(zhì),勾股定理,解(1)的關(guān)鍵是待定系數(shù)法的應(yīng)用,解(2)的關(guān)鍵是利用函數(shù)圖象確定x的范圍,解(3)的關(guān)鍵是分類討論.21、(1)y=﹣2x+1;y=﹣80x【答案解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標(biāo),再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標(biāo)即可.(3)觀察函數(shù)圖象,當(dāng)函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【題目詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標(biāo)為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當(dāng)﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當(dāng)x=10時,y=﹣8,∴點E坐標(biāo)為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【答案點睛】本題考查了應(yīng)用待定系數(shù)法求一次函數(shù)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論