江蘇省東臺市第六聯(lián)盟2022年數(shù)學九上期末聯(lián)考試題含解析_第1頁
江蘇省東臺市第六聯(lián)盟2022年數(shù)學九上期末聯(lián)考試題含解析_第2頁
江蘇省東臺市第六聯(lián)盟2022年數(shù)學九上期末聯(lián)考試題含解析_第3頁
江蘇省東臺市第六聯(lián)盟2022年數(shù)學九上期末聯(lián)考試題含解析_第4頁
江蘇省東臺市第六聯(lián)盟2022年數(shù)學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若,則的值為()A.1 B. C. D.2.設A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1,y2,y3的大小關系為()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y23.如圖,四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,若∠ADE=110°,則∠B=()A.80° B.100° C.110° D.120°4.如圖,是的內(nèi)接正十邊形的一邊,平分交于點,則下列結論正確的有()①;②;③;④.A.1個 B.2個 C.3個 D.4個5.已知反比例函數(shù),下列結論正確的是()A.圖象在第二、四象限 B.當時,函數(shù)值隨的增大而增大C.圖象經(jīng)過點 D.圖象與軸的交點為6.如圖,正方形的面積為16,是等邊三角形,點在正方形內(nèi),在對角線上有一點,使的和最小,則這個最小值為()A.2 B.4 C.6 D.87.如圖,已知在平面直角坐標系xOy中,O為坐標原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結OD,則OD的最大值是()A. B. C.2 D.8.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和B,與y軸的正半軸交于點C,下列結論:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個9.方程x(x﹣5)=x的解是()A.x=0

B.x=0或x=5

C.x=6 D.x=0或x=610.如圖,在平面直角坐標系中,⊙O的半徑為1,則直線與⊙O的位置關系是()A.相離 B.相切 C.相交 D.以上三種情況都有可能11.如圖,AB是☉O的直徑,點C,D在☉O上,且,OD繞著點O順時針旋轉(zhuǎn),連結CD交直線AB于點E,當DE=OD時,的大小不可能為()A. B. C. D.12.反比例函數(shù)的圖象經(jīng)過點,若點在反比例函數(shù)的圖象上,則n等于()A.-4 B.-9 C.4 D.9二、填空題(每題4分,共24分)13.若順次連接四邊形ABCD各邊中點所得四邊形為矩形,則四邊形ABCD的對角線AC、BD之間的關系為_____.14.如圖,已知等邊的邊長為,頂點在軸正半軸上,將折疊,使點落在軸上的點處,折痕為.當是直角三角形時,點的坐標為__________.15.(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內(nèi)接于點O,點E是上的一動點(不與A、B重合),點F是上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結論:①;②△OGH是等腰三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為.其中正確的是________(把你認為正確結論的序號都填上).16.如圖,在矩形中,在上,在矩形的內(nèi)部作正方形.當,時,若直線將矩形的面積分成兩部分,則的長為________.17.拋物線的頂點坐標是_______.18.如圖,旗桿高AB=8m,某一時刻,旗桿影子長BC=16m,則tanC=_____.三、解答題(共78分)19.(8分)為了樹立文明鄉(xiāng)風,推進社會主義新農(nóng)村建設,某村決定組建村民文體團隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機抽取部村民進行問卷調(diào)查,并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)請將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);(3)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表法或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.20.(8分)列一元二次方程解應用題某公司今年1月份的純利潤是20萬元,由于改進技術,生產(chǎn)成本逐月下降,3月份的純利潤是22.05萬元.假設該公司2、3、4月每個月增長的利潤率相同.(1)求每個月增長的利潤率;(2)請你預測4月份該公司的純利潤是多少?21.(8分)一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:售價x(元/千克)…50607080…銷售量y(千克)…100908070…(1)求y與x的函數(shù)關系式;(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?22.(10分)如圖,△ABC的三個頂點在平面直角坐標系中的坐標分別為A(3,3),B(2,1),C(5,1),將△ABC繞點O逆時針旋轉(zhuǎn)180°得△A′B′C′,請你在平面直角坐標系中畫出△A′B′C′,并寫出△A′B′C′的頂點坐標.23.(10分)為了創(chuàng)建文明城市,增弘環(huán)保意識,某班隨機抽取了8名學生(分別為A,B,C,D,E,F(xiàn),G,H),進行垃圾分類投放檢測,檢測結果如下表,其中“√”表示投放正確,“×”表示投放錯誤,學生垃圾類別ABCDEFGH可回收物√××√√×√√其他垃圾×√√√√×√√餐廚垃圾√√√√√√√√有害垃圾×√×××√×√(1)檢測結果中,有幾名學生正確投放了至少三類垃圾?請列舉出這幾名學生.(2)為進一步了解學生垃圾分類的投放情況,從檢測結果是“有害垃圾”投放錯誤的學生中隨機抽取2名進行訪談,求抽到學生A的概率.24.(10分)在平面直角坐標系中,已知拋物線.(1)我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標;(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標;若不存在,說明理由.25.(12分)在平行四邊形中,為對角線,,點分別為邊上的點,連接平分.(1)如圖,若且,求平行四邊形的面積.(2)如圖,若過作交于求證:26.如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣1,0),且tan∠ACO=1.(1)求該反比例函數(shù)和一次函數(shù)的解析式;(1)求點B的坐標.

參考答案一、選擇題(每題4分,共48分)1、D【解析】∵,∴==,故選D2、A【分析】根據(jù)函數(shù)解析式畫出拋物線以及在圖象上標出三個點的位置,根據(jù)二次函數(shù)圖像的增減性即可得解.【詳解】∵函數(shù)的解析式是,如圖:∴對稱軸是∴點關于對稱軸的點是,那么點、、都在對稱軸的右邊,而對稱軸右邊隨的增大而減小,于是.故選:A.【點睛】本題考查了二次函數(shù)圖象的對稱性以及增減性,畫出函數(shù)圖像是解題的關鍵,根據(jù)題意畫出函數(shù)圖象能夠更直觀的解答.3、C【分析】直接利用圓內(nèi)接四邊形的性質(zhì)分析得出答案.【詳解】∵四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,∠ADE=110°,∴∠B=∠ADE=110°.故選:C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì).熟練掌握圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補;.圓內(nèi)接四邊形的外角等于它的內(nèi)對角是解題的關鍵.4、C【分析】①③,根據(jù)已知把∠ABD,∠CBD,∠A角度確定相等關系,得到等腰三角形證明腰相等即可;②通過證△ABC∽△BCD,從而確定②是否正確,根據(jù)AD=BD=BC,即解得BC=AC,故④正確.【詳解】①BC是⊙A的內(nèi)接正十邊形的一邊,因為AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因為BD平分∠ABC交AC于點D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正確;又∵△ABD中,AD+BD>AB∴2AD>AB,故③錯誤.②根據(jù)兩角對應相等的兩個三角形相似易證△ABC∽△BCD,∴,又AB=AC,故②正確,根據(jù)AD=BD=BC,即,解得BC=AC,故④正確,故選C.【點睛】本題主要考查圓的幾何綜合,解決本題的關鍵是要熟練掌握圓的基本性質(zhì)和幾何圖形的性質(zhì).5、C【分析】根據(jù)反比例函數(shù)的性質(zhì)逐條判斷即可得出答案.【詳解】解:A錯誤圖像在第一、三象限B錯誤當時,函數(shù)值y隨x的增大而減小C正確D錯誤反比例函數(shù)x≠0,所以與y軸無交點故選C【點睛】此題主要考查了反比例函數(shù)的性質(zhì),牢牢掌握反比例函數(shù)相關性質(zhì)是解題的關鍵.6、B【分析】由于點B與點D關于AC對稱,所以連接BE,與AC的交點即為F,此時,F(xiàn)D+FE=BE最小,而BE是等邊三角形ABE的邊,BE=AB,由正方形面積可得AB的長,從而得出結果.【詳解】解:由題意可知當點P位于BE與AC的交點時,有最小值.設BE與AC的交點為F,連接BD,∵點B與點D關于AC對稱∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面積為16∴AB=1∵△ABE是等邊三角形∴BE=AB=1.故選:B.【點睛】本題考查的知識點是軸對稱中的最短路線問題,解題的關鍵是弄清題意,找出相對應的相等線段.7、B【分析】取點H(6,0),連接PH,由待定系數(shù)法可求拋物線解析式,可得點C坐標,可得⊙C半徑為4,由三角形中位線的定理可求OD=PH,當點C在PH上時,PH有最大值,即可求解.【詳解】如圖,取點H(6,0),連接PH,∵拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),∴,解得:,∴拋物線解析式為:y=﹣,∴頂點C(﹣3,4),∴⊙C半徑為4,∵AO=OH=6,AD=BD,∴OD=PH,∴PH最大時,OD有最大值,∴當點C在PH上時,PH有最大值,∴PH最大值為=3+=3+,∴OD的最大值為:,故選B.【點睛】本題主要考查了切線的性質(zhì),二次函數(shù)的性質(zhì),三角形中位線定理等知識,解決本題的關鍵是要熟練掌握二次函數(shù)性質(zhì)和三角形中位線的性質(zhì).8、C【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,進而判斷①;根據(jù)x=﹣2時,y>1可判斷②;根據(jù)對稱軸x=﹣1求出2a與b的關系,進而判斷③.【詳解】①由拋物線開口向下知a<1,∵對稱軸位于y軸的左側,∴a、b同號,即ab>1.∵拋物線與y軸交于正半軸,∴c>1,∴abc>1;故①正確;②如圖,當x=﹣2時,y>1,則4a﹣2b+c>1,故②正確;③∵對稱軸為x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③錯誤;故選:C.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì),解題的關鍵是掌握數(shù)形結合思想的應用,注意掌握二次函數(shù)圖象與系數(shù)的關系.9、D【分析】先移項,然后利用因式分解法解方程.【詳解】解:x(x﹣5)﹣x=0,x(x﹣5﹣1)=0,x=0或x﹣5﹣1=0,∴x1=0或x2=1.故選:D.【點睛】本題考查了解一元二次方程﹣因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).10、B【詳解】解:如圖,在中,令x=0,則y=-;令y=0,則x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,過點O作OD⊥AB,則OD=BD=AB=×2=1.又∵⊙O的半徑為1,∴圓心到直線的距離等于半徑.∴直線y=x-2與⊙O相切.故選B.11、C【分析】分三種情況求解即可:①當點D與點C在直徑AB的異側時;②當點D在劣弧BC上時;③當點D在劣弧AC上時.【詳解】①如圖,連接OC,設,則,,∵,,在中,,,∴,;②如圖,連接OC,設,則,,,,在中,,,∴,;(3)如圖,設,則,,,,由外角可知,,,,,故選C.【點睛】本題考查了圓的有關概念,旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì),以及分類討論的數(shù)學思想,分類討論是解答本題的關鍵.12、A【分析】將點(-2,6)代入得出k的值,再將代入即可【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,∴k=(-2)×6=-12,∴又點(3,n)在此反比例函數(shù)的圖象上,

∴3n=-12,

解得:n=-1.

故選:A【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.二、填空題(每題4分,共24分)13、AC⊥BD.【分析】根據(jù)矩形的性質(zhì)、三角形的中位線定理和平行線的性質(zhì)即可得出結論.【詳解】解:如圖,設四邊形EFGH是符合題意的中點四邊形,則四邊形EFGH是矩形,∴∠FEH=90°,∵點E、F分別是AD、AB的中點,∴EF是△ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD的中點,∴EH是△ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為AC⊥BD.【點睛】本題考查了矩形的性質(zhì)、三角形的中位線定理和平行線的性質(zhì),熟練掌握三角形中位線定理是解此題的關鍵.14、,【解析】當A′E∥x軸時,△A′EO是直角三角形,可根據(jù)∠A′OE的度數(shù)用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的長,也就能求出A′E的長,據(jù)此可求出A′的坐標;當∠A’EO=90°時,△A′EO是直角三角形,設OE=x,則AE=A’E=-x,根據(jù)三角函數(shù)的關系列出方程即可求解x,從而求出A’的坐標.【詳解】當A′E∥x軸時,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,設A′的坐標為(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐標是(0,1);當∠A’EO=90°時,△A′EO是直角三角形,設OE=x,則AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)綜上,A’的坐標為,.【點睛】此題主要考查圖形與坐標,解題的關鍵是熟知等邊三角形的性質(zhì)、三角函數(shù)的應用.15、①②.【解析】解:①如圖所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE與△COF中,∵OB=OC,∠BOE=∠COF,OE=OF,∴△BOE≌△COF,∴BE=CF,∴,①正確;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=15°,∴△BOG≌△COH,∴OG=OH.∵∠GOH=90°,∴△OGH是等腰直角三角形,②正確;③如圖所示,∵△HOM≌△GON,∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=1.設BG=x,則BH=1﹣x,則GH====,∴其最小值為,∴△GBH周長的最小值=GB+BH+GH=1+,D錯誤.故答案為①②.16、或【分析】分二種情形分別求解:①如圖1中,延長交于,當時,直線將矩形的面積分成兩部分.②如圖2中,延長交于交的延長線于,當時,直線將矩形的面積分成兩部分.【詳解】解:如圖1中,設直線交于,當時,直線將矩形的面積分成兩部分.,,,.如圖2中,設直線長交于交的延長線于,當時,直線將矩形的面積分成兩部分,易證∴,,,,.綜上所述,滿足條件的的值為或.故答案為:或.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.17、(5,3)【分析】根據(jù)二次函數(shù)頂點式的性質(zhì)直接求解.【詳解】解:拋物線的頂點坐標是(5,3)故答案為:(5,3).【點睛】本題考查二次函數(shù)性質(zhì)其頂點坐標為(h,k),題目比較簡單.18、.【分析】根據(jù)直角三角形的性質(zhì)解答即可.【詳解】∵旗桿高AB=8m,旗桿影子長BC=16m,∴tanC===,故答案為【點睛】此題考查解直角三角形的應用,關鍵是根據(jù)正切值是對邊與鄰邊的比值解答.三、解答題(共78分)19、(1)見解析;(2)“劃龍舟”所在扇形的圓心角的度數(shù)為:90°;(3)兩個項目的概率是.【分析】(1)直接利用腰鼓所占比例以及條形圖中人數(shù)即可得出這次參與調(diào)查的村民人數(shù),利用條形統(tǒng)計圖以及樣本數(shù)量得出喜歡廣場舞的人數(shù),補齊條形統(tǒng)計圖即可;(2)利用“劃龍舟”人數(shù)在樣本中所占比例得出“劃龍舟”所在扇形的圓心角的度數(shù);(3)利用樹狀圖法列舉出所有的可能進而得出概率.【詳解】(1)這次參與調(diào)查的村民人數(shù)為:24÷20%=120(人),喜歡廣場舞的人數(shù)為:120-24-15-30-9=42(人),如圖所示:(2)扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù)為:×360°=90°;………………(3)如圖所示:一共有12種可能,恰好選中“花鼓戲、劃龍舟”這兩個項目的有2種可能,故恰好選中“花鼓戲、劃龍舟”這兩個項目的概率是=.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖,樹狀圖法與列表法求概率,仔細識圖,從中找到必要的解題信息是關鍵.20、(1)每個月增長的利潤率為5%.(2)4月份該公司的純利潤為23.1525萬元.【分析】(1)設出平均增長率,根據(jù)題意表示出1月份和3月份的一元二次方程即可解題,(2)根據(jù)上一問求出的平均增長率,用3月份利潤即可求出4月份的純利潤.【詳解】解:(1)設每個月增長的利潤率為x,根據(jù)題意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合題意,舍去).答:每個月增長的利潤率為5%.(2)22.05×(1+5%)=23.1525(萬元).答:4月份該公司的純利潤為23.1525萬元.【點睛】本題考查了一元二次方程的實際應用,屬于簡單題,理解平均增長率的含義是解題關鍵.21、(1)y與x的函數(shù)關系式為y=-x+150;(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為70元;(3)該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為1元.【分析】(1)根據(jù)圖表中的各數(shù)可得出y與x成一次函數(shù)關系,從而結合圖表的數(shù)可得出y與x的關系式;(2)根據(jù)想獲得4000元的利潤,列出方程求解即可;(3)根據(jù)批發(fā)商獲得的總利潤w(元)=售量×每件利潤可表示出w與x之間的函數(shù)表達式,再利用二次函數(shù)的最值可得出利潤最大值.【詳解】(1)設y與x的函數(shù)關系式為y=kx+b(k≠0),根據(jù)題意得,解得,故y與x的函數(shù)關系式為y=-x+150;(2)根據(jù)題意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合題意,舍去).故該批發(fā)商若想獲得4000元的利潤,應將售價定為70元;(3)w與x的函數(shù)關系式為:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴當x=85時,w值最大,w最大值是1.∴該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為1元.22、A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).【解析】試題分析:由于△ABC繞點O逆時針旋轉(zhuǎn)180°得△A′B′C′,則△ABC和△A′B′C′關于原點中心對稱,然后根據(jù)關于原點對稱的點的坐標特征寫出A′點、B′點、C′點的坐標,再描點即可.解:如圖,△A′B′C′為所作,A′(﹣3,﹣3),B′(﹣2,﹣1),C′(﹣5,﹣1).考點:作圖-旋轉(zhuǎn)變換.23、(1)有5位同學正確投放了至少三類垃圾,他們分別是B、D、E、G、H同學;(2).【分析】(1)從表格中,找出正確投放了至少三類垃圾的同學即可;(2))“有害垃圾”投放錯誤的學生有A、C、D、E、G同學,用列表法列舉出所有可能出現(xiàn)的結果,從中找出“有A同學”的結果數(shù),進而求出概率.【詳解】解:(1)有5位同學正確投放了至少三類垃圾,他們分別是B、D、E、G、H同學,(2)“有害垃圾”投放錯誤的學生有A、C、D、E、G同學,從中抽出2人所有可能出現(xiàn)的結果如下:共有20種可能出現(xiàn)的結果數(shù),其中抽到A的有8種,因此,抽到學生A的概率為.【點睛】本題考查的知識點是概率,理解題意,利用列表法求解比較簡單.24、(1)拋物線的方點坐標是,;(2)當時,的面積最大,最大值為;(3)存在,或【分析】(1)由定義得出x=y,直接代入求解即可(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設出點P的坐標,利用點坐標求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值(3)通過拋物線與直線的解析式可求出點B,C的坐標,得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標,得出直線BN、MC的解析式然后解方程組即可.【詳解】解:(1)由題意得:∴解得,∴拋物線的方點坐標是,.(2)過點作軸的平行線交于點.易得平移后拋物線的表達式為,直線的解析式為.設,則.∴∴∴當時,的面積最大,最大值為.(3)如圖所示,過點C作交x軸于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論