版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.在平面直角坐標系中,將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為()A. B.C. D.2.下列事件中,是隨機事件的是()A.任意畫兩個圓,這兩個圓是等圓 B.⊙O的半徑為5,OP=3,點P在⊙O外C.直徑所對的圓周角為直角 D.不在同一條直線上的三個點確定一個圓3.如果用線段a、b、c,求作線段x,使,那么下列作圖正確的是()A. B.C. D.4.把圖1的正方體切下一個角,按圖2放置,則切下的幾何體的主視圖是()A. B. C. D.5.如圖,在一張矩形紙片中,對角線,點分別是和的中點,現(xiàn)將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經(jīng)過點,則點到對角線的距離為().A. B. C. D.6.如圖,中,,在同一平面內(nèi),將繞點旋轉(zhuǎn)到的位置,使得,則的度數(shù)為()A. B. C. D.7.如圖,⊙O是△ABC的外接圓,∠OCB=40°,則∠A的大小為()A.40° B.50° C.80° D.100°8.如圖,⊙O的弦AB⊥OC,且OD=2DC,AB=,則⊙O的半徑為()A.1 B.2 C.3 D.99.如圖,弦和相交于內(nèi)一點,則下列結(jié)論成立的是()A.B.C.D.10.下列對拋物線y=-2(x-1)2+3性質(zhì)的描寫中,正確的是(
)A.開口向上 B.對稱軸是直線x=1 C.頂點坐標是(-1,3) D.函數(shù)y有最小值11.如圖反比例函數(shù)()與正比例函數(shù)()相交于兩點A,B.若點A(1,2),B坐標是()A.(,) B.(,) C.(,) D.(,)12.數(shù)據(jù)4,3,5,3,6,3,4的眾數(shù)和中位數(shù)是()A.3,4 B.3,5 C.4,3 D.4,5二、填空題(每題4分,共24分)13.如圖,△ABC的內(nèi)切圓與三邊分別切于點D,E,F(xiàn),若∠C=90°,AD=3,BD=5,則△ABC的面積為_____.14.點在拋物線上,則__________.(填“>”,“<”或“=”).15.四邊形ABCD與四邊形位似,點O為位似中心.若,則________.16.將拋物線y=x2﹣2x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為____________________________17.如圖,已知等邊的邊長為,,分別為,上的兩個動點,且,連接,交于點,則的最小值_______.18.在1:5000的地圖上,某兩地間的距離是,那么這兩地的實際距離為______________千米.三、解答題(共78分)19.(8分)先化簡,后求值:,其中x=﹣1.20.(8分)如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.(1)請直接寫出D點的坐標.(2)求二次函數(shù)的解析式.(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.21.(8分)為加快城鄉(xiāng)對接,建設美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.(1)開通隧道前,汽車從A地到B地要走多少千米?(2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)22.(10分)已知二次函數(shù)(是常數(shù)).(1)當時,求二次函數(shù)的最小值;(2)當,函數(shù)值時,以之對應的自變量的值只有一個,求的值;(3)當,自變量時,函數(shù)有最小值為-10,求此時二次函數(shù)的表達式.23.(10分)如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC于E.(1)求證:AB=AC;(2)求證:DE為⊙O的切線.24.(10分)如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).(1)請在圖中畫出△ABC關于y軸對稱的圖形△A1B1C1:(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸的左側(cè)畫出△A2B2C2,并求出△A2B2C2的面積.25.(12分)一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:售價x(元/千克)…50607080…銷售量y(千克)…100908070…(1)求y與x的函數(shù)關系式;(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?26.某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為40米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.(1)若苗圃園的面積為102平方米,求x;(2)若使這個苗圃園的面積最大,求出x和面積最大值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】直接關鍵二次函數(shù)的平移規(guī)律“左加右減,上加下減”解答即可.【詳解】將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為:故選:B【點睛】本題考查的是二次函數(shù)的平移,掌握其平移規(guī)律是關鍵,需注意:二次函數(shù)平移時必須化成頂點式.2、A【分析】隨機事件就是可能發(fā)生也可能不發(fā)生的事件,根據(jù)定義即可判斷.【詳解】A.任意畫兩個圓,這兩個圓是等圓,屬于隨機事件,符合題意;B.⊙O的半徑為5,OP=3,點P在⊙O外,屬于不可能事件,不合題意;C.直徑所對的圓周角為直角,屬于必然事件,不合題意;D.不在同一條直線上的三個點確定一個圓,屬于必然事件,不合題意;故選:A.【點睛】本題考查了隨機事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【分析】利用比例式a:b=c:x,與已知圖形作對比,可以得出結(jié)論.【詳解】A、a:b=x:c與已知a:b=c:x不符合,故選項A不正確;B、a:b=c:x與已知a:b=c:x符合,故選項B正確;C、a:c=x:b與已知a:b=c:x不符合,故選項C不正確;D、a:x=b:c與已知a:b=c:x不符合,故選項D不正確;故選:B.【點睛】本題考查了平行線分線段成比例定理、復雜作圖,熟練掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例.4、B【分析】根據(jù)主視圖的定義,畫出圖2的主視圖進行判斷即可.【詳解】根據(jù)主視圖的定義,切下的幾何體的主視圖是含底邊高的等邊三角形(高為虛線),作出切下的幾何體的主視圖如下故答案為:B.【點睛】本題考查了立體幾何的主視圖問題,掌握主視圖的定義和作法是解題的關鍵.5、B【分析】設DH與AC交于點M,易得EG為△CDH的中位線,所以DG=HG,然后證明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后設BH=a,則BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜邊AM上的高即為G到AC的距離.【詳解】如圖,設DH與AC交于點M,過G作GN⊥AC于N,∵E、F分別是CD和AB的中點,∴EF∥BC∴EG為△CDH的中位線∴DG=HG由折疊的性質(zhì)可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折疊的性質(zhì)可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°設BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故選B.【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),全等三角形與相似三角形的判定與性質(zhì),以及勾股定理的應用,解題的關鍵是求出∠BAH=30°,再利用勾股定理求出邊長.6、B【分析】根據(jù),得出∠BAC=∠C′CA,利用旋轉(zhuǎn)前后的圖形是全等,所以△ACC′是等腰三角形即可求出∠CC′A,∠CC′A+∠C′AB=180°即可得出旋轉(zhuǎn)角度,最后得出結(jié)果.【詳解】解:∵∴∠BAC=∠C′CA,∠CC′A+∠C′AB=180°∵∴∠C′CA=70°∵△ABC旋轉(zhuǎn)得到△AB′C′∴AC=AC′∴∠ACC′=∠AC′C=70°∴∠BAC′=180°-70°=110°∴∠CAC′=40°∴∠BAB′=40°故選:B.【點睛】本題主要考查的是旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的圖形是全等的,正確的掌握旋轉(zhuǎn)的性質(zhì)的解題的關鍵.7、B【解析】試題分析:∵OB=OC,∠OCB=40°,∴∠BOC=180°-2∠OCB=100°,∴由圓周角定理可知:∠A=∠BOC=50°.故選B.8、C【分析】根據(jù)垂徑定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的長即可得答案.【詳解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(負值舍去),故選:C.【點睛】本題主要考查垂徑定理及勾股定理,垂直于弦的直徑平分弦,并且平分弦所對的兩條?。皇炀氄莆沾箯蕉ɡ硎墙忸}關鍵.9、C【分析】連接AC、BD,根據(jù)圓周角定理得出角相等,推出兩三角形相似,根據(jù)相似三角形的性質(zhì)推出即可.【詳解】連接AC、BD,∵由圓周角定理得:∠A=∠D,∠C=∠B,∴△CAP∽△BDP,∴∴,所以只有選項C正確.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì)、圓周角定理,連接AC、BD利用圓周角定理是解題的關鍵.10、B【分析】由拋物線的解析式可求得開口方向、對稱軸及頂點坐標,再逐一進行判斷即可.【詳解】解:A、∵?2<0,∴拋物線的開口向下,故A錯誤,不符合題意;B、拋物線的對稱軸為:x=1,故B正確,符合題意;C、拋物線的頂點為(1,3),故C錯誤,不符合題意;D、因為開口向下,故該函數(shù)有最大值,故D錯誤,不符合題意.故答案為:B.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,頂點坐標為(h,k),對稱軸為x=h.11、A【分析】先根據(jù)點A的坐標求出兩個函數(shù)解析式,然后聯(lián)立兩個解析式即可求出答案.【詳解】將A(1,2)代入反比例函數(shù)(),得a=2,∴反比例函數(shù)解析式為:,將A(1,2)代入正比例函數(shù)(),得k=2,∴正比例函數(shù)解析式為:,聯(lián)立兩個解析式,解得或,∴點B的坐標為(-1,-2),故選:A.【點睛】本題考查了反比例函數(shù)和正比例函數(shù),求出函數(shù)解析式是解題關鍵.12、A【分析】根據(jù)眾數(shù)和中位數(shù)的定義解答即可.【詳解】解:在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是3,即眾數(shù)是3;
把這組數(shù)據(jù)按照從小到大的順序排列3,3,3,4,4,5,6,
∴中位數(shù)為4;
故選:A.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.二、填空題(每題4分,共24分)13、1【分析】直接利用切線長定理得出AD=AF=3,BD=BE=5,F(xiàn)C=EC,再結(jié)合勾股定理得出FC的長,進而得出答案.【詳解】解:∵Rt△ABC的內(nèi)切圓⊙I分別與斜邊AB、直角邊BC、CA切于點D、E、F,AD=3,BD=5,∴AD=AF=3,BD=BE=5,F(xiàn)C=EC,設FC=EC=x,則(3+x)2+(5+x)2=82,整理得,x2+8x﹣5=0,解得:(不合題意舍去),則,故Rt△ABC的面積為故答案為1.【點睛】本題考查了切線長定理和勾股定理,解決本題的關鍵是正確理解題意,熟練掌握切線長定理的相關內(nèi)容,找到線段之間的關系.14、>【分析】把A、B兩點的坐標代入拋物線的解析式,求出的值即得答案.【詳解】解:把A、B兩點的坐標代入拋物線的解析式,得:,,∴>.故答案為:>.【點睛】本題考查了二次函數(shù)的性質(zhì)和二次函數(shù)圖象上點的坐標特征,屬于基本題型,掌握比較的方法是解答關鍵.15、1∶3【解析】根據(jù)四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【詳解】∵四邊形與四邊形位似,點為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.16、或【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將y=x1-1x+3化為頂點式,得:y=(x-1)1+1.將拋物線y=x1-1x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案為:或.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.17、【分析】根據(jù)題意利用相似三角形判定≌,并求出OC的值即有的最小值從而求解.【詳解】解:如圖∵∴≌∴∴點的路徑是一段弧(以點為圓心的圓上)∴∴,∵∴∴所以的最小值【點睛】本題結(jié)合相似三角形相關性質(zhì)考查最值問題,利用等邊三角形以及勾股定理相關等進行分析求解.18、1【分析】根據(jù)比例尺的意義,可得答案.【詳解】解:,故答案為:1.【點睛】本題考查了比例尺,利用比例尺的意義是解題關鍵,注意把厘米化成千米.三、解答題(共78分)19、x﹣2,-2.【分析】由題意先根據(jù)分式的混合運算順序和運算法則化簡原式,再將x的值代入計算可得.【詳解】解:==x﹣2,當x=﹣1時,原式=﹣1﹣2=﹣2.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.20、(1)D(﹣2,3);(2)二次函數(shù)的解析式為y=﹣x2﹣2x+3;(3)一次函數(shù)值大于二次函數(shù)值的x的取值范圍是x<﹣2或x>1.【詳解】試題分析:(1)由拋物線的對稱性來求點D的坐標;(2)設二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c常數(shù)),把點A、B、C的坐標分別代入函數(shù)解析式,列出關于系數(shù)a、b、c的方程組,通過解方程組求得它們的值即可;(3)由圖象直接寫出答案.試題解析:(1)∵如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,∴對稱軸是x==﹣1.又點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,∴D(﹣2,3);(2)設二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c常數(shù)),根據(jù)題意得,解得,所以二次函數(shù)的解析式為y=﹣x2﹣2x+3;(3)如圖,一次函數(shù)值大于二次函數(shù)值的x的取值范圍是x<﹣2或x>1.考點:1、拋物線與x軸的交點;2、待定系數(shù)法;3、二次函數(shù)與不等式(組).21、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【分析】(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.22、(1)當x=2時,;(2)b=±3;
(3)或【分析】(1)將代入并化簡,從而求出二次函數(shù)的最小值;(2)根據(jù)自變量的值只有一個,得出根的判別式,從而求出的值;(3)當,對稱軸為x=b,分b<1、、三種情況進行討論,從而得出二次函數(shù)的表達式.【詳解】(1)當b=2,c=5時,∴當x=2時,(2)當c=3,函數(shù)值時,
∴∵對應的自變量的值只有一個,
∴,∴b=±3(3)
當c=3b時,∴拋物線對稱軸為:x=b①b<1時,在自變量x的值滿足1≤x≤5的情況下,y隨x的增大而增大,∴當x=1時,y最小.∴∴b=﹣11②,當x=b時,y最小.∴∴,(舍去)
③時,在自變量x的值滿足1≤x≤5的情況下,y隨x的增大而
減小,∴當x=5時,y最小.∴,∴b=5(舍去)綜上可得:b=﹣11或b=5∴二次函數(shù)的表達式:或【點睛】本題考查了二次函數(shù)的性質(zhì)和應用,掌握根的判別式、二次函數(shù)的性質(zhì)和解二次函數(shù)的方法是解題的關鍵.23、(1)證明見解析;(2)證明見解析;【分析】(1)連接AD,根據(jù)中垂線定理不難求得AB=AC;(2)要證DE為⊙O的切線,只要證明∠ODE=90°即可.【詳解】(1)連接AD;∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂線.∴AB=AC.(2)連接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切線.考點:切線的判定24、(1)詳見解析;(2)圖詳見解析,.【分析】(1)利用關于y軸的點的坐標特征寫出A1、B1、C1的坐標,然后描點即可;(2)把A、B、C點的橫縱坐標都乘以得到A2、B2、C2的坐標,再描點得到△A2B2C2,然后計算△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中科院2025版聘用合同崗位職責詳細說明書4篇
- 2025年度建筑室內(nèi)空氣凈化與裝修合同2篇
- 智能灌溉技術的未來應用前景
- 2025版旅游行業(yè)采購合同簽訂與旅游服務保障協(xié)議3篇
- 課題申報參考:農(nóng)村父母教養(yǎng)效能感與幼兒家庭生活質(zhì)量的關系及干預研究
- 二零二五版棉紗出口退稅及政策支持合同3篇
- 2025年度個人財產(chǎn)抵押反擔保合同模板創(chuàng)新版4篇
- 2025版木門安裝與維修服務合同4篇
- 二零二五版民法典離婚協(xié)議書樣本與專業(yè)律師服務協(xié)議4篇
- 二零二五年度智能農(nóng)機租賃服務合同模板4篇
- 焊接機器人在汽車制造中應用案例分析報告
- 合成生物學在生物技術中的應用
- 中醫(yī)門診病歷
- 廣西華銀鋁業(yè)財務分析報告
- 無違法犯罪記錄證明申請表(個人)
- 電捕焦油器火災爆炸事故分析
- 大學生勞動教育PPT完整全套教學課件
- 繼電保護原理應用及配置課件
- 《殺死一只知更鳥》讀書分享PPT
- 蓋洛普Q12解讀和實施完整版
- 2023年Web前端技術試題
評論
0/150
提交評論