版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖南省長(zhǎng)沙市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.
4.某技術(shù)專家,原來(lái)從事專業(yè)工作,業(yè)務(wù)精湛,績(jī)效顯著,近來(lái)被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點(diǎn)調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點(diǎn)仍以技術(shù)工作為主,以自身為榜樣帶動(dòng)下級(jí)
C.以抓管理工作為主,同時(shí)參與部分技術(shù)工作,以增強(qiáng)與下級(jí)的溝通和了解
D.在抓好技術(shù)工作的同時(shí),做好管理工作
5.A.A.1
B.
C.m
D.m2
6.
7.
8.
A.
B.
C.
D.
9.若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
10.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
11.
12.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
13.A.A.0
B.
C.
D.∞
14.A.等價(jià)無(wú)窮小
B.f(x)是比g(x)高階無(wú)窮小
C.f(x)是比g(x)低階無(wú)窮小
D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小
15.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)16.A.A.1/2B.1C.2D.e17.A.0B.1/2C.1D.218.A.1/x2
B.1/x
C.e-x
D.1/(1+x)2
19.
20.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.121.()。A.過(guò)原點(diǎn)且平行于X軸B.不過(guò)原點(diǎn)但平行于X軸C.過(guò)原點(diǎn)且垂直于X軸D.不過(guò)原點(diǎn)但垂直于X軸22.23.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C24.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
25.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件
26.
27.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)28.A.A.2B.1C.0D.-129.A.(1/3)x3
B.x2
C.2xD.(1/2)x30.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面31.若,則下列命題中正確的有()。A.
B.
C.
D.
32.A.A.
B.
C.
D.
33.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
34.
35.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
36.A.A.
B.
C.
D.
37.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
38.
39.
40.在特定工作領(lǐng)域內(nèi)運(yùn)用技術(shù)、工具、方法等的能力稱為()
A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確
41.
42.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面
43.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有
A.f(x)對(duì)于g(x)是高階的無(wú)窮小量
B.f(x)對(duì)于g(x)是低階的無(wú)窮小量
C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量
D.f(x)與g(x)為等價(jià)無(wú)窮小量
44.
45.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+3
46.
47.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
48.
49.
50.
二、填空題(20題)51.
52.交換二重積分次序=______.53.設(shè)f(x)=esinx,則=________。54.
55.
56.
57.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_(kāi)______.58.59.60.
61.
62.
63.
64.
65.66.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.
67.曲線y=2x2-x+1在點(diǎn)(1,2)處的切線方程為_(kāi)_________。
68.69.設(shè)f(x)在x=1處連續(xù),=2,則=________。70.三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
72.
73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
75.
76.求曲線在點(diǎn)(1,3)處的切線方程.77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則78.求微分方程的通解.79.
80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.
84.證明:85.
86.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
88.求微分方程y"-4y'+4y=e-2x的通解.
89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).90.四、解答題(10題)91.
92.設(shè)
93.
94.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
95.計(jì)算∫tanxdx。
96.求微分方程的通解.97.求曲線在點(diǎn)(1,3)處的切線方程.98.
99.
100.
五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.B
2.D
3.C
4.C
5.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小量代換.
解法1
解法2
6.C
7.D
8.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
9.B
10.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。
11.A
12.C
13.A本題考查的知識(shí)點(diǎn)為“有界變量與無(wú)窮小量的乘積為無(wú)窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問(wèn)題中的所給條件.
14.D
15.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。
16.C
17.D本題考查了二元函數(shù)的偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
18.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。
19.C
20.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
21.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過(guò)原點(diǎn)(或由
22.A
23.C
24.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
25.D
26.A
27.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).
極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).
28.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
29.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
30.A
31.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
32.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
33.C
34.A
35.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
36.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
37.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
38.D
39.C
40.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過(guò)程、慣例、技術(shù)和工具的能力。
41.A
42.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.
43.C
44.C
45.C本題考查了一階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
46.B
47.A
48.B
49.A
50.D解析:
51.y=x3+1
52.本題考查的知識(shí)點(diǎn)為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
53.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。54.(2x+cosx)dx.
本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
55.3x2siny
56.
57.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
58.
59.60.本題考查的知識(shí)點(diǎn)為定積分的基本公式。
61.
62.ln|1-cosx|+Cln|1-cosx|+C解析:
63.y=1/2y=1/2解析:
64.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).65.3yx3y-166.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
67.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)
68.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
69.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。70.F(sinx)+C.
本題考查的知識(shí)點(diǎn)為不定積分的換元法.
71.
72.
73.
74.函數(shù)的定義域?yàn)?/p>
注意
75.76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.由等價(jià)無(wú)窮小量的定義可知
78.79.由一階線性微分方程通解公式有
80.
81.
82.由二重積分物理意義知
83.
則
84.
85.
86.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
87.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年科研機(jī)構(gòu)復(fù)印紙訂購(gòu)合同
- 2024年道路照明設(shè)施招投標(biāo)代理服務(wù)合同3篇
- 2024年駕校場(chǎng)地租賃合同模板
- 2024版常年咨詢財(cái)務(wù)顧問(wèn)合同房地產(chǎn)
- 勞務(wù)派遣項(xiàng)目計(jì)劃協(xié)議書(shū)
- 勞務(wù)派遣崗位薪資協(xié)議書(shū)
- 勞動(dòng)合同模板(2篇)
- 2024深圳租房合同房屋維修責(zé)任
- 2024水電設(shè)施運(yùn)維勞務(wù)承包合同模板3篇
- 2025年度辦公室改造與智能照明系統(tǒng)安裝合同3篇
- 德邦物流人力資源管理規(guī)劃項(xiàng)目診療
- 基于西門(mén)子S7-200型PLC的消防給水泵控制系統(tǒng)設(shè)計(jì)
- 儀器設(shè)備采購(gòu)流程圖
- 盈利能力分析外文翻譯
- 不合格醫(yī)療器械報(bào)損清單
- 高中物理全套培優(yōu)講義
- 新一代反洗錢(qián)監(jiān)測(cè)分析系統(tǒng)操作手冊(cè)all
- 礦山環(huán)境保護(hù)ppt課件(完整版)
- 檔案保護(hù)技術(shù)概論期末復(fù)習(xí)資料教材
- (高清版)外墻外保溫工程技術(shù)標(biāo)準(zhǔn)JGJ144-2019
- 聚氨酯基礎(chǔ)知識(shí)
評(píng)論
0/150
提交評(píng)論