2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年遼寧省遼陽(yáng)市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.A.1

B.

C.

D.1n2

2.A.

B.x2

C.2x

D.

3.

4.

5.

6.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

7.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

8.

9.A.2/5B.0C.-2/5D.1/2

10.A.0或1B.0或-1C.0或2D.1或-1

11.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()

A.

B.ln(1+x)

C.

D.x2(x+1)

12.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線(xiàn)y=f(x)與直線(xiàn)x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

13.由曲線(xiàn)y=1/X,直線(xiàn)y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

14.

15.

16.

17.

18.等于().A.A.0

B.

C.

D.∞

19.若y1·y2為二階線(xiàn)性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解

B.為所給方程的解,但不一定是通解

C.為所給方程的通解

D.不為所給方程的解

20.

21.

22.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

23.設(shè)y=2^x,則dy等于().

A.x.2x-1dx

B.2x-1dx

C.2xdx

D.2xln2dx

24.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.

B.1

C.

D.-1

25.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().

A.2x3

B.3x2

C.x2

D.x3

26.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸

27.

28.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.

B.

C.

D.

29.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

30.設(shè)y1,y2為二階線(xiàn)性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

31.A.-1

B.0

C.

D.1

32.

33.

34.()。A.

B.

C.

D.

35.

36.

37.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-238.A.A.

B.

C.

D.

39.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

40.

41.

42.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx43.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

44.

45.設(shè)()A.1B.-1C.0D.246.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x

B.y=C1e-3x+C2e4x

C.y=C1e3x+C2e4x

D.y=C1e-3x+C2e-4x

47.

48.A.A.-sinx

B.cosx

C.

D.

49.A.0B.2C.2f(-1)D.2f(1)

50.

二、填空題(20題)51.

52.過(guò)點(diǎn)(1,-1,0)且與直線(xiàn)平行的直線(xiàn)方程為_(kāi)_____。53.

54.

55.

56.

57.

58.

59.設(shè)y=lnx,則y'=_________。

60.

61.

62.

63.設(shè)f(x)=esinx,則=________。

64.

65.

66.

67.

68.

69.70.三、計(jì)算題(20題)71.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

72.73.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

75.

76.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).77.證明:78.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.79.

80.求微分方程y"-4y'+4y=e-2x的通解.

81.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.82.

83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.84.85.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.

87.

88.求微分方程的通解.

89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

90.四、解答題(10題)91.

92.求曲線(xiàn)y=x2、直線(xiàn)y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。

93.

94.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

95.96.97.

98.

99.

100.

五、高等數(shù)學(xué)(0題)101.已知同上題若產(chǎn)品以每件500元出售,問(wèn):要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件?

六、解答題(0題)102.

參考答案

1.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

因此選C.

2.C

3.C

4.C

5.D

6.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

7.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

8.B

9.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

10.A

11.B?

12.C

13.B本題考查了曲線(xiàn)所圍成的面積的知識(shí)點(diǎn),

曲線(xiàn)y=1/X與直線(xiàn)y=x,x=2所圍成的區(qū)域D如下圖所示,

14.C

15.D解析:

16.A解析:

17.D

18.A

19.B

20.C

21.D

22.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線(xiàn)性微分方程;還可以仿二階線(xiàn)性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線(xiàn)性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線(xiàn)性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

23.D南微分的基本公式可知,因此選D.

24.B

25.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.

26.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。

27.B

28.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。

29.B

30.B本題考查的知識(shí)點(diǎn)為線(xiàn)性常系數(shù)微分方程解的結(jié)構(gòu).

已知y1,y2為二階線(xiàn)性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線(xiàn)性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.

本題中常見(jiàn)的錯(cuò)誤是選C.這是由于忽略了線(xiàn)性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線(xiàn)性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線(xiàn)性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒(méi)有指出)y1,y2為線(xiàn)性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.

31.C

32.D

33.D

34.C由不定積分基本公式可知

35.D解析:

36.B

37.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

38.D

39.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

40.C解析:

41.C

42.B

43.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

44.B

45.A

46.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x

47.A

48.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

49.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

50.A解析:

51.11解析:52.本題考查的知識(shí)點(diǎn)為直線(xiàn)的方程和直線(xiàn)與直線(xiàn)的關(guān)系。由于兩條直線(xiàn)平行的充分必要條件為它們的方向向量平行,因此可取所求直線(xiàn)的方向向量為(2,1,-1).由直線(xiàn)的點(diǎn)向式方程可知所求直線(xiàn)方程為

53.

54.

55.1

56.

57.

58.1/π

59.1/x

60.e2

61.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)

62.063.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

64.-3e-3x-3e-3x

解析:65.由可變上限積分求導(dǎo)公式可知66.f(0).

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于f(0)=0,f(0)存在,因此

本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:

因?yàn)轭}設(shè)中只給出f(0)存在,并沒(méi)有給出f(x)(x≠0)存在,也沒(méi)有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.

67.

68.11解析:69.解析:70.

71.

72.73.由等價(jià)無(wú)窮小量的定義可知

74.

75.

76.

列表:

說(shuō)明

77.

78.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

79.由一階線(xiàn)性微分方程通解公式有

80.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

81.由二重積分物理意義知

82.

83.函數(shù)的定義域?yàn)?/p>

注意

84.

85.

86.

87.

88.

89.需求規(guī)律

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論