




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
FloatingPointPresentationOutlineFloating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsProgramminglanguagessupportnumberswithfractionCalledfloating-point
numbersExamples: 3.14159265…(π) 2.71828…(e) 0.000000001or1.0×10–9(secondsinananosecond) 86,400,000,000,000or8.64×1013(nanosecondsinaday)
lastnumberisalargeintegerthatcannotfitina32-bitintegerWeuseascientificnotationtorepresentVerysmallnumbers(e.g.1.0×10–9)Verylargenumbers(e.g.8.64×1013)Scientificnotation:±d
.
f1f2f3f4…×10±e1e2e3TheWorldisNotJustIntegersExamplesoffloating-pointnumbersinbase10…5.341×103,0.05341×105,–2.013×10–1,–201.3×10–3Examplesoffloating-pointnumbersinbase2…1.00101×223,0.0100101×225,–1.101101×2–3,–1101.101×2–6ExponentsarekeptindecimalforclarityThebinarynumber(1101.101)2=23+22+20+2–1+2–3=13.625Floating-pointnumbersshouldbenormalizedExactlyonenon-zerodigitshouldappearbeforethepointInadecimalnumber,thisdigitcanbefrom1to9Inabinarynumber,thisdigitshouldbe1NormalizedFPNumbers:5.341×103and–1.101101×2–3NOTNormalized:0.05341×105and–1101.101×2–6Floating-PointNumbersdecimalpointbinarypointAfloating-pointnumberisrepresentedbythetripleSistheSignbit(0ispositiveand1isnegative)RepresentationiscalledsignandmagnitudeEistheExponentfield(signed)VerylargenumbershavelargepositiveexponentsVerysmallclose-to-zeronumbershavenegativeexponentsMorebitsinexponentfieldincreases
rangeofvaluesFistheFractionfield(fractionafterbinarypoint)MorebitsinfractionfieldimprovestheprecisionofFPnumbers Valueofafloating-pointnumber=(-1)S
×val(F)×2val(E)Floating-PointRepresentationSExponentFractionNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsIEEE754Floating-PointStandardFoundinvirtuallyeverycomputerinventedsince1980Simplifiedportingoffloating-pointnumbersUnifiedthedevelopmentoffloating-pointalgorithmsIncreasedtheaccuracyoffloating-pointnumbersSinglePrecisionFloatingPointNumbers(32bits)1-bitsign+8-bitexponent+23-bitfractionDoublePrecisionFloatingPointNumbers(64bits)1-bitsign+11-bitexponent+52-bitfractionSExponent8Fraction23SExponent11Fraction52(continued)Foranormalizedfloatingpointnumber(S,E,F)Significandisequalto(1.F)2=(1.f1f2f3f4…)2IEEE754assumeshidden1.
(notstored)fornormalizednumbersSignificandis1bitlongerthanfractionValueofaNormalizedFloatingPointNumberis (–1)S
×(1.F)2×2val(E) (–1)S
×(1.f1f2f3f4…)2×2val(E) (–1)S
×(1+f1×2-1+f2×2-2+f3×2-3+f4×2-4…)2×2val(E)
(–1)S
is1whenSis0(positive),and–1whenSis1(negative)NormalizedFloatingPointNumbersSEF=f1
f2
f3
f4
…BiasedExponentRepresentationHowtorepresentasignedexponent?Choicesare…Sign+magnituderepresentationfortheexponentTwo’scomplementrepresentationBiasedrepresentationIEEE754usesbiasedrepresentationfortheexponentValueofexponent=val(E)=E–Bias(Biasisaconstant)Recallthatexponentfieldis8bitsforsingleprecisionEcanbeintherange0to255E=0andE=255arereservedforspecialuse(discussedlater)E=1to254areusedfornormalizedfloatingpointnumbersBias=127(halfof254),val(E)=E
–127val(E=1)=–126,val(E=127)=0,val(E=254)=127BiasedExponent–Cont’dFordoubleprecision,exponentfieldis11bitsEcanbeintherange0to2047E=0andE=2047arereservedforspecialuseE=1to2046areusedfornormalizedfloatingpointnumbersBias=1023(halfof2046),val(E)=E
–1023val(E=1)=–1022,val(E=1023)=0,val(E=2046)=1023ValueofaNormalizedFloatingPointNumberis (–1)S
×(1.F)2×2E–Bias (–1)S
×(1.f1f2f3f4…)2×2E–Bias (–1)S×(1+f1×2-1+f2×2-2+f3×2-3+f4×2-4…)2×2E–Bias
ExamplesofSinglePrecisionFloatWhatisthedecimalvalueofthisSinglePrecisionfloat?Solution:Sign=1isnegativeExponent=(01111100)2=124,E–bias=124–127=–3Significand=(1.0100…0)2=1+2-2=1.25(1.isimplicit)Valueindecimal=–1.25×2–3=–0.15625Whatisthedecimalvalueof?Solution:Valueindecimal=+(1.01001100…0)2×2130–127= (1.01001100…0)2×23=(1010.01100…0)2=10.3751011111000100000000000000000000001000001001001100000000000000000implicitExamplesofDoublePrecisionFloatWhatisthedecimalvalueofthisDoublePrecisionfloat?Solution:Valueofexponent=(10000000101)2–Bias=1029–1023=6Valueofdoublefloat=(1.00101010…0)2×26(1.isimplicit)=
(1001010.10…0)2=74.5Whatisthedecimalvalueof?Doityourself!
(answershouldbe–1.5×2–7=–0.01171875)01000000010100101010000000000000000000000000000000000000000000001011111110001000000000000000000000000000000000000000000000000000ConvertingFPDecimaltoBinaryConvert–0.8125tobinaryinsingleanddoubleprecisionSolution:Fractionbitscanbeobtainedusingmultiplicationby20.8125×2 =1.6250.625×2 =1.250.25×2 =0.50.5×2 =1.0Stopwhenfractionalpartis0Fraction=(0.1101)2=(1.101)2×2–1
(Normalized)Exponent=–1+Bias=
126(singleprecision)
and1022(double)0.8125=(0.1101)2=?+?+1/16=13/16101111110101000000000000000000001011111111101010000000000000000000000000000000000000000000000000SinglePrecisionDoublePrecisionLargestNormalizedFloatWhatistheLargestnormalized
float?SolutionforSinglePrecision:Exponent–bias=254–127=127(largestexponentforSP)Significand=(1.111…1)2=almost2Valueindecimal≈2×2127≈2128≈3.4028…×1038
SolutionforDoublePrecision:Valueindecimal≈2×21023≈21024≈1.79769…×10308Overflow:exponentistoolargetofitintheexponentfield011111110111111111111111111111110111111111101111111111111111111111111111111111111111111111111111SmallestNormalizedFloatWhatisthesmallest(inabsolutevalue)normalized
float?SolutionforSinglePrecision:Exponent–bias=1–127=–126(smallestexponentforSP)Significand=(1.000…0)2=1Valueindecimal=1×2–126=1.17549…×10–38
SolutionforDoublePrecision:Valueindecimal=1×2–1022=2.22507…×10–308Underflow:exponentistoosmalltofitinexponentfield000000001000000000000000000000000000000000010000000000000000000000000000000000000000000000000000Zero,Infinity,andNaNZeroExponentfieldE=0andfractionF=0+0and–0arepossibleaccordingtosignbitS
InfinityInfinityisaspecialvaluerepresentedwithmaximumEandF
=0Forsingleprecision
with8-bitexponent:maximumE=255Fordoubleprecision
with11-bitexponent:maximumE=2047Infinitycanresultfromoverflowordivisionbyzero+∞and–∞arepossibleaccordingtosignbitSNaN(NotaNumber)NaNisaspecialvaluerepresentedwithmaximumEandF≠0Resultfromexceptionalsituations,suchas0/0orsqrt(negative)OperationonaNaNresultsisNaN:Op(X,NaN)=NaNDenormalizedNumbersIEEEstandardusesdenormalizednumbersto…Fillthegapbetween0andthesmallestnormalizedfloatProvidegradualunderflowtozeroDenormalized:exponentfieldEis0andfractionF
≠0Implicit1.beforethefractionnowbecomes0.(notnormalized)Valueofdenormalizednumber(S,0,F) Singleprecision: (–1)
S
×(0.F)2×2–126 Doubleprecision: (–1)
S
×(0.F)2×2–1022DenormDenorm+∞PositiveOverflow-∞NegativeOverflowNegativeUnderflowPositiveUnderflowNormalized(–ve)Normalized(+ve)2–12621280-2128-2–126IEEE754floatingpointnumbersareorderedBecauseexponentusesabiasedrepresentation…ExponentvalueanditsbinaryrepresentationhavesameorderingPlacingexponentbeforethefractionfieldordersthemagnitudeLargerexponentlargermagnitudeForequalexponents,Largerfractionlargermagnitude0<(0.F)2×2Emin
<(1.F)2
×2E–Bias<∞(Emin=1–Bias)Becausesignbitismostsignificantquicktestof
signed<
IntegercomparatorcancomparemagnitudesIntegerMagnitudeComparatorX<YX=YX>YX=(EX
,FX)Y=(EY
,FY)Floating-PointComparisonSummaryofIEEE754EncodingSingle-PrecisionExponent=8Fraction=23ValueNormalizedNumber1to254Anything±(1.F)2×2E
–127DenormalizedNumber0nonzero±(0.F)2×2–126Zero00±0Infinity2550±∞NaN255nonzeroNaNDouble-PrecisionExponent=11Fraction=52ValueNormalizedNumber1to2046Anything±(1.F)2×2E
–1023DenormalizedNumber0nonzero±(0.F)2×2–1022Zero00±0Infinity20470±∞NaN2047nonzeroNaNNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsFloatingPointAdditionExampleConsideradding:(1.111)2×2–1+(1.011)2×2–3Forsimplicity,weassume4bitsofprecision(or3bitsoffraction)Cannotaddsignificands…Why?BecauseexponentsarenotequalHowtomakeexponentsequal?Shiftthesignificandofthelesserexponentright untilitsexponentmatchesthelargernumber(1.011)2×2–3
=
(0.1011)2×2–2
=
(0.01011)2×2–1
Differencebetweenthetwoexponents=–1–(–3)=2So,shiftrightby2bitsNow,addthesignificands:Carry1.1110.01011
10.00111+AdditionExample–cont’dSo,(1.111)2×2–1+(1.011)2×2–3=(10.00111)2×2–1However,result(10.00111)2×2–1isNOTnormalizedNormalize
result:
(10.00111)2×2–1=(1.000111)2×20
Inthisexample,wehaveacarrySo,shiftrightby1bitandincrementtheexponentRoundthesignificand
tofitinappropriatenumberofbitsWeassumed4bitsofprecisionor3bitsoffractionRoundtonearest:(1.000111)2≈(1.001)2RenormalizeifroundinggeneratesacarryDetectoverflow/underflowIfexponentbecomestoolarge(overflow)
ortoosmall
(underflow)1.000111
11.001+FloatingPointSubtractionExampleConsider:(1.000)2×2–3
–(1.000)2×22Weassumeagain:4bitsofprecision(or3bitsoffraction)ShiftsignificandofthelesserexponentrightDifferencebetweenthetwoexponents=2–(–3)=5Shiftrightby5bits:(1.000)2×2–3
=
(0.00001000)2×22Convertsubtractionintoadditionto2'scomplement+0.00001×22–1.00000×2200.00001×2211.00000×2211.00001×22SignSinceresultisnegative,convertresultfrom2'scomplementtosign-magnitude2’sComplement–0.11111×222’sComplementSubtractionExample–cont’dSo,(1.000)2×2–3
–(1.000)2×22
=–0.111112×22Normalize
result:
–
0.111112×22=–1.11112×21
Forsubtraction,wecanhaveleadingzerosCountnumberzofleadingzeros
(inthiscasez=1)ShiftleftanddecrementexponentbyzRoundthesignificand
tofitinappropriatenumberofbitsWeassumed4bitsofprecisionor3bitsoffractionRoundtonearest:(1.1111)2≈(10.000)2Renormalize:roundinggeneratedacarry –1.11112×21≈–10.0002×21=–1.0002×22Resultwouldhavebeenaccurateifmorefractionbitsareused1.111
1
110.000+FloatingPointAddition/Subtraction1. Comparetheexponentsofthetwonumbers.Shiftthesmallernumbertotherightuntilitsexponentwouldmatchthelargerexponent.2. Add/Subtractthesignificandsaccordingtothesignbits.3. Normalizethesum,eithershiftingrightandincrementingtheexponentorshiftingleftanddecrementingtheexponent4. Roundthesignificandtotheappropriatenumberofbits,andrenormalizeifroundinggeneratesacarryStartDoneOverfloworunderflow?ExceptionyesnoShiftsignificandrightbyd=|EX–EY
|AddsignificandswhensignsofXandYareidentical,SubtractwhendifferentX–YbecomesX+(–Y)Normalizationshiftsrightby1ifthereisacarry,orshiftsleftbythenumberofleadingzerosinthecaseofsubtractionRoundingeithertruncatesfraction,oraddsa1toleastsignificantfractionbitFloatingPointAdderBlockDiagramczEZEXFXShiftRight/LeftInc/DecEYSwapFYShiftRightExponentSubtractorSignificandAdder/Subtractor11signSignComputationd=|EX–EY|max(EX,EY)add/subtractRoundingLogicsignSYadd/subFZSZcSXzDetectcarry,orCountleading0’sc01Next...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsFloatingPointMultiplicationExampleConsidermultiplying:1.0102×2–1by–1.1102×2–2Asbefore,weassume4bitsofprecision(or3bitsoffraction)Unlikeaddition,weaddtheexponentsoftheoperandsResultexponentvalue=(–1)+(–2)=–3Usingthebiasedrepresentation:EZ=EX+EY–BiasEX=(–1)+127=126(Bias=127forSP)EY=(–2)+127=125EZ=126+125–127=124(value=–3)Now,multiplythesignificands: (1.010)2×(1.110)2=(10.001100)21.0101.110
000010101010101010001100×3-bitfraction3-bitfraction6-bitfractionMultiplicationExample–cont’dSincesignSX≠SY,signofproductSZ=1(negative)So,1.0102×2–1×–1.1102×2–2
=–10.0011002×2–3However,result:–10.0011002×2–3isNOTnormalizedNormalize:
10.0011002×2–3=1.00011002×2–2
Shiftrightby1bitandincrementtheexponentAtmost1bitcanbeshiftedright…Why?Round
thesignificand
tonearest: 1.00011002≈1.0012(3-bitfraction) Result≈–1.0012×2–2
(normalized)Detectoverflow/underflowNooverflow/underflow
becauseexponentiswithinrange1.0001100
11.001+FloatingPointMultiplication1. Addthebiasedexponentsofthetwonumbers,subtractingthebiasfromthesumtogetthenewbiasedexponentMultiplythesignificands.Settheresultsigntopositiveifoperandshavesamesign,andnegativeotherwise3. Normalizetheproductifnecessary,shiftingitssignificandrightandincrementingtheexponent4. Roundthesignificandtotheappropriatenumberofbits,andrenormalizeifroundinggeneratesacarryStartDoneOverfloworunderflow?ExceptionyesnoBiasedExponentAdditionEZ
=EX+EY
–BiasResultsignSZ=SX
xor
SYcanbecomputedindependentlySincetheoperandsignificands1.FXand1.FYare≥1and<2,theirproductis≥1and<4.Tonormalizeproduct,weneedtoshiftrightby1bitonlyandincrementexponentRoundingeithertruncatesfraction,oraddsa1toleastsignificantfractionbitNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsExtraBitstoMaintainPrecisionFloating-pointnumbersareapproximationsfor…RealnumbersthattheycannotrepresentInfinitevarietyofrealnumbersexistbetween1.0and2.0However,exactly223fractionscanberepresentedinSP,andExactly252fractionscanberepresentedinDP(doubleprecision)Extrabitsaregeneratedinintermediateresultswhen…Shiftingandadding/subtractingap-bitsignificandMultiplyingtwop-bitsignificands(productcanbe2pbits)Butwhenpackingresultfraction,extrabitsarediscardedWeonlyneedfewextrabitsinanintermediateresultMinimizinghardwarebutwithoutcompromisingprecisionGuardBitGuardbit:guardsagainstlossofasignificantbitOnlyoneguardbitisneededtomaintainaccuracyofresultShiftedleft(ifneeded)duringnormalizationaslastfractionbitExampleontheneedofaguardbit:1.00000000101100010001101×25–
1.00000000000000010011010×2-2
(subtraction)1.00000000101100010001101×25–
0.000000100000000000000010011010×25
(shiftright7bits)
1.00000000101100010001101×2511.111111011111111111111101100110×25(2'scomplement)
00.111111101011000100010111100110×25(addsignificands)
+1.11111101011000100010111100010×24(normalized)Guardbit–donotdiscardRoundandStickyBitsTwoextrabitsareneededforroundingJustafternormalizingaresultsignificandRoundbit: appearsjustafterthenormalizedsignificandStickybit: appearsaftertheroundbit(ORofalladditionalbits)ReducethehardwareandstillachieveaccuratearithmeticAsifresultsignificandwascomputedexactlyandroundedConsiderthesameexampleofpreviousslide:1.00000000101100010001101×2511.111111011111111111111101100110×25(2'scomplement)
00.11111110101100010001011111×25(sum)
+1.1111110101100010001011111×24(normalized)RoundbitStickybitOR-reduceFourRoundingModesNormalizedresulthastheform:1.f1
f2…fl
r
sTheroundbit
randstickybit
sappearafterthelastfractionbitflIEEE754standardspecifiesfourmodesofroundingRoundtoNearestEven:defaultroundingmodeIncrementresultif:rs=“11”or(rs=“10”andfl=‘1’)Otherwise,truncateresultsignificandto1.f1
f2…fl
Roundtoward+∞:resultisroundedupIncrementresultifsignispositiveandrors=‘1’Roundtoward–∞:resultisroundeddownIncrementresultifsignisnegativeandrors=‘1’Roundtoward0:alwaystruncateresultRoundfollowingresultusingIEEE754roundingmodes:
–1.1111111111111111111111101×2-7RoundtoNearestEven:Truncateresultsincer=‘0’TruncatedResult:–1.11111111111111111111111×2-7Roundtowards+∞:Roundtowards–∞:Incrementedresult:
–10.00000000000000000000000×2-7Renormalizeandincrementexponent(becauseofcarry)Finalroundedresult:
–1.00000000000000000000000×2-6Roundtowards0:ExampleonRoundingRoundBitStickyBitTruncateresultsincenegativeIncrement
sincenegativeands=‘1’TruncatealwaysAdvantagesofIEEE754StandardUsedpredominantlybytheindustryEncodingofexponentandfractionsimplifiescomparisonIntegercomparatorusedtocomparemagnitudeofFPnumbersIncludesspecialexceptionalvalues:NaNand±∞Specialrulesareusedsuchas:0/0isNaN,sqrt(–1)isNaN,1/0is∞,and1/∞is0ComputationmaycontinueinthefaceofexceptionalconditionsDenormalizednumberstofillthegapBetweensmallestnormalizednumber1.0×2EminandzeroDenormalizednumbers,values0.F×2Emin
,areclosertozeroGradualunderflow
tozeroOperationsaresomewhatmorecomplicatedInadditiontooverflowwecanhaveunderflowAccuracycanbeabigproblemExtrabitstomaintainprecision:guard,round,andstickyFourroundingmodesDivisionbyzeroyieldsInfinityZerodividebyzeroyieldsNot-a-NumberOthercomplexitiesImplementingthestandardcanbetrickySeetextfordescriptionof80x86andPentiumbug!NotusingthestandardcanbeevenworseFloatingPointComplexitiesNext...Floating-PointNumbersIEEE754Floating-PointStandardFloating-PointAdditionandSubtractionFloating-PointMultiplicationExtraBitsandRoundingMIPSFloating-PointInstructionsCalledCoprocessor1ortheFloatingPointUnit(FPU)32separatefloatingpointregisters:$f0,$f1,…,$f31FPregistersare32bitsforsingleprecisionnumbersEven-oddregisterpairformadoubleprecisionregisterUsetheevennumberfordoubleprecisionregisters$f0,$f2,$f4,…,$f30areusedfordoubleprecisionSeparateFPinstructionsforsingle/doubleprecisionSingleprecision: add.s,sub.s,mul.s,div.s
(.sextension)Doubleprecision:add.d,sub.d,mul.d,div.d
(.dextension)FPinstructionsaremorecomplexthantheintegeronesTakemorecyclestoexecuteMIPSFloatingPointCoprocessorFPArithmeticInstructionsInstructionMeaningFormatadd.s fd,fs,ft(fd)=(fs)+(ft)0x110ft5fs5fd50add.d fd,fs,ft(fd)=(fs)+(ft)0x111ft5fs5fd50sub.s fd,fs,ft(fd)=(fs)–(ft)0x110ft5fs5fd51sub.d fd,fs,ft(fd)=(fs)–(ft)0x111ft5fs5fd51mul.s fd,fs,ft(fd)=(fs)×(ft)0x110ft5fs5fd52mul.d fd,fs,ft(fd)=(fs)×(ft)0x111ft5fs5fd52div.s fd,fs,ft(fd)=(fs)/(ft)0x110ft5fs5fd53div.d fd,fs,ft(fd)=(fs)/(ft)0x111ft5fs5fd53sqrt.s fd,fs(fd)=sqrt(fs)0x1100fs5fd54sqrt.d fd,fs(fd)=sqrt(fs)0x1110fs5fd54abs.s fd,fs(fd)=abs(fs)0x1100fs5fd55abs.d fd,fs(fd)=abs(fs)0x1110fs5fd55neg.s fd,fs(fd)=–(fs)0x1100fs5fd57neg.d fd,fs(fd)=–(fs)0x1110fs5fd57Separatefloatingpointload/storeinstructionslwc1: loadwordcoprocessor1ldc1: loaddoublecoprocessor1swc1: storewordcoprocessor1sdc1: storedoublecoprocessor1Betternamescanbeusedfortheaboveinstructionsl.s=lwc1(loadFPsingle), l.d=ldc1(loadFPdouble)s.s=swc1(storeFPsingle), s.d=sdc1(storeFPdouble)FPLoad/StoreInstructionsInstructionMeaningFormatlwc1 $f2,40($t0)($f2)=Mem[($t0)+40]0x31$t0$f2im16=40ldc1 $f2,40($t0)($f2)=Mem[($t0)+40]0x35$t0$f2im16=40swc1 $f2,40($t0)Mem[($t0)+40]=($f2)0x39$t0$f2im16=40sdc1 $f2,40($t0)Mem[($t0)+40]=($f2)0x3d$t0$f2im16=40GeneralpurposeregisterisusedasthebaseregisterMovingdatabetweengeneralpurposeandFPregistersmfc1: movefromcoprocessor1 (togeneralpurposeregister)mtc1: movetocoprocessor1 (fromgeneralpurposeregister)MovingdatabetweenFPregistersmov.s: movesingleprecisionfloatmov.d: movedoubleprecisionfloat=even/oddpairofregistersFPDataMovementInstructionsInstructionMeaningFormatmfc1 $t0,$f2($t0)=($f2)0x110$t0$f200mtc1 $t0,$f2($f2)=($t0)0x114$t0$f200mov.s $f4,$f2($f4)=($f2)0x1100$f2$f46mov.d $f4,$f2($f4)=($f2)0x1110$f2$f46FPConvertInstructionsInstructionMeaningFormatcvt.s.w fd,fstosinglefrominteger0x1100fs5fd50x20cvt.s.d fd,fstosinglefromdouble0x1110fs5fd50x20cvt.d.w fd,fstodoublefrominteger0x1100fs5fd50x21cvt.d.s fd,fstodoublefromsingle0x1110fs5fd50x21cvt.w.s fd,fstointegerfromsingle0x1100fs5fd50x24cvt.w.d fd,fstointegerfromdouble0x1110fs5fd50x24Convertinstruction:cvt.x.yConverttodestinationformatxfromsourceformatySupportedformatsSingleprecisionfloat =.s (singleprecisionfloatinFPregister)Doubleprecisionfloat =.d (doublefloatineven-oddFPregister)Signedintegerword =.w (signedintegerinFPregister)FPCompareandBranchInstructionsInstructionMeaningFormatc.eq.s fs,ftcflag=((fs)==(ft))0x110ft5fs500x32c.eq.d fs,ftcflag=((fs)==(ft))0x111ft5fs500x32c.lt.s fs,ftcflag=((fs)<=(ft))0x110ft5fs500x3cc.lt.d fs,ftcflag=((fs)<=(ft))0x111ft5fs500x3cc.le.s fs,ftcflag=((fs)<=(ft))0x110ft5fs500x3ec.le.d fs,ftcflag=((fs)<=(ft))0x111ft5fs500x3ebc1f Labelbranchif(cflag==0)0x1180im16bc1t Labelbranchif(cflag==1)0x1181im16
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)勞動合同范本:全員適用版
- 追討合同違約金起訴書范本
- 快遞企業(yè)委托代理合同
- 汽車保險合同模板
- 土地租賃經(jīng)營權(quán)合同書樣本
- 技術(shù)研發(fā)勞動合同規(guī)定
- 機織服裝的綠色包裝設(shè)計考核試卷
- 無線傳輸技術(shù)在野生動物保護中的應(yīng)用考核試卷
- 方便食品市場趨勢與消費者需求分析考核試卷
- 批發(fā)商客戶關(guān)系持續(xù)優(yōu)化策略研究考核試卷
- 初中物理競賽及自主招生講義:第7講 密度、壓強與浮力(共5節(jié))含解析
- 高中主題班會 梁文鋒和他的DeepSeek-由DeepSeek爆火開啟高中第一課-高中主題班會課件
- 污水處理設(shè)施運維服務(wù)投標方案(技術(shù)標)
- 一年級下冊書法教案 (一)
- 《浙江省應(yīng)急管理行政處罰裁量基準適用細則》知識培訓
- 2024年八年級語文下冊《經(jīng)典常談》第一章《說文解字》練習題卷附答案
- 華為基建項目管理手冊
- 《黑龍江省住房和城鄉(xiāng)建設(shè)系統(tǒng)行政處罰裁量基準》
- 發(fā)育生物學1-9章全
- 基于單片機的交通信號燈模擬控制系統(tǒng)設(shè)計 答辯PPT
- 中國舞蹈家協(xié)會《中國舞蹈考級》 第四版教材
評論
0/150
提交評論