2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

2.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()

A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)

3.A.0B.1C.∞D(zhuǎn).不存在但不是∞

4.設(shè)是正項(xiàng)級(jí)數(shù),且un<υn(n=1,2,…),則下列命題正確的是()

A.B.C.D.

5.

6.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

7.

8.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)

9.

10.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散

11.A.A.

B.

C.

D.

12.

13.

14.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()

A.-1B.-2C.-3D.-415.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)

B.x0為f(x)的極小值點(diǎn)

C.x0不為f(x)的極值點(diǎn)

D.x0可能不為f(x)的極值點(diǎn)

16.以下結(jié)論正確的是().

A.

B.

C.

D.

17.

A.3(x+y)

B.3(x+y)2

C.6(x+y)

D.6(x+y)2

18.

19.A.A.2

B.1

C.1/2e

D.

20.收入預(yù)算的主要內(nèi)容是()

A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算二、填空題(20題)21.設(shè),則y'=______。22.23.24.設(shè)是收斂的,則后的取值范圍為______.

25.

26.

27.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。

28.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為__________.

29.

30.過原點(diǎn)且與直線垂直的平面方程為______.

31.

32.設(shè)函數(shù)y=x3,則y'=________.

33.

34.

35.

36.微分方程y=x的通解為________。37.

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.48.求曲線在點(diǎn)(1,3)處的切線方程.

49.求微分方程y"-4y'+4y=e-2x的通解.

50.

51.將f(x)=e-2X展開為x的冪級(jí)數(shù).52.

53.證明:54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則55.

56.求微分方程的通解.

57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.

59.

60.四、解答題(10題)61.

62.

63.設(shè)z=xsiny,求dz。

64.

65.將f(x)=e-2x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。

66.67.將f(x)=1/3-x展開為(x+2)的冪級(jí)數(shù),并指出其收斂區(qū)間。68.

69.設(shè)y=x2+2x,求y'。

70.五、高等數(shù)學(xué)(0題)71.用拉格朗日乘數(shù)法計(jì)算z=x2+y2+1在條件x+y=3下的極值。

六、解答題(0題)72.判定曲線y=3x3-4x2-x+1的凹向.

參考答案

1.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

2.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).

3.D

4.B由正項(xiàng)級(jí)數(shù)的比較判別法可以得到,若小的級(jí)數(shù)發(fā)散,則大的級(jí)數(shù)必發(fā)散,故選B。

5.D

6.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

7.A

8.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).

這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且

本題常見的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.

9.B

10.D

11.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選A.

12.A

13.A

14.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。

15.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.

由極值的第二充分條件可知應(yīng)選A.

16.C

17.C

因此選C.

18.A解析:

19.B

20.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。21.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。22.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.

23.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。24.k>1本題考查的知識(shí)點(diǎn)為廣義積分的收斂性.

由于存在,可知k>1.

25.3/23/2解析:

26.63/12

27.1

28.

29.(sinx+cosx)exdx(sinx+cosx)exdx解析:30.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

31.-sinx

32.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

33.22解析:

34.

35.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).36.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,

37.

38.

解析:

39.

40.

41.

42.

43.

列表:

說明

44.

45.函數(shù)的定義域?yàn)?/p>

注意

46.

47.由二重積分物理意義知

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

50.

51.

52.

53.

54.由等價(jià)無窮小量的定義可知55.由一階線性微分方程通解公式有

56.

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.y=x2+2xy'=(x2)'+(2x)=2x+2xIn2。y=x2+2x,y'=(x2)'+(2x)=2x+2xIn2。

70.

71.z=x2+y2+1在條件x+y=3下的極值設(shè)F=x2+y2+1+λ(x+y一3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論