下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
《圓柱、圓錐、圓臺的表面積和體積》同步作業(yè)一、選擇題1.如圖所示,圓錐的底面半徑為1,高為eq\r(3),則該圓錐的表面積為()A.πB.2πC.3πD.4πC解析:設(shè)圓錐的母線長為l,則l=eq\r(12+\r(3)2)=2,所以圓錐的表面積為S=π×1×(1+2)=3π.2.面積為Q的正方形,繞其一邊旋轉(zhuǎn)一周,則所得幾何體的側(cè)面積為()A.πQB.2πQC.3πQD.4πQB解析:[正方形繞其一邊旋轉(zhuǎn)一周,得到的是圓柱,其側(cè)面積為S=2πrl=2π·eq\r(Q)·eq\r(Q)=2πQ.故選B.]3.一個圓臺的母線長等于上、下底面半徑和的一半,且側(cè)面積是32π,則母線長為()A.2 B.2eq\r(2)C.4 D.8C解析:[圓臺的軸截面如圖,由題意知,l=eq\f(1,2)(r+R),S圓臺側(cè)=π(r+R)·l=π·2l·l=32π,∴l(xiāng)=4.]4.若一圓柱與圓錐的高相等,且軸截面面積也相等,那么圓柱與圓錐的體積的比值為() B. C. D.34D解析:設(shè)圓柱底面半徑為R,圓錐底面半徑為r,高都為h,由已知得2Rh=rh,∴r=2R,V柱∶V錐=πR2h∶πr2h=3∶4,故選D.5.在△ABC中,AB=2,BC=eq\f(3,2),∠ABC=120°,將△ABC繞直線BC旋轉(zhuǎn)一周,所形成的幾何體的體積是()\f(9,2)π\(zhòng)f(7,2)π\(zhòng)f(5,2)π\(zhòng)f(3,2)πD解析:如圖,△ABC繞直線BC旋轉(zhuǎn)一周,所形成的幾何體是以△ACD為軸截面的圓錐中挖去一個以△ABD為軸截面的圓錐后剩余的部分.因為AB=2,BC=eq\f(3,2),∠ABC=120°,所以AE=ABsin60°=eq\r(3),BE=AB·cos60°=1,CE=eq\f(5,2).V1=eq\f(1,3)π·AE2·CE=eq\f(5π,2),V2=eq\f(1,3)π·AE2·BE=π,所以V=V1-V2=eq\f(3,2)π.故選D.二、填空題6.表面積為3π的圓錐,它的側(cè)面展開圖是一個半圓,則該圓錐的底面直徑為.2解析:[設(shè)圓錐的母線為l,圓錐底面半徑為r,由題意可知,πrl+πr2=3π,且πl(wèi)=2πr.解得r=1,即直徑為2.]7.如圖是某幾何體的直觀圖,則這個幾何體的表面積為________,體積為________.7π2π+eq\f(\r(3),3)π解析:這個幾何體是一個簡單組合體,它的下部是一個圓柱(底面半徑為1,高為2),它的上部是一個圓錐(底面半徑為1,母線長為2,高為eq\r(3)),所以該幾何體的表面積S=π×12+2π×1×2+π×1×2=7π,體積V=π×12×2+eq\f(1,3)×π×12×eq\r(3)=2π+eq\f(\r(3),3)π.8.已知某圓柱的底面周長為12,高為2,矩形ABCD是該圓柱的軸截面,則在此圓柱側(cè)面上,從A到C的路徑中,最短路徑的長度為2eq\r(10)解析:[圓柱的側(cè)面展開圖如圖,圓柱的側(cè)面展開圖是矩形,且矩形的長為12,寬為2,則在此圓柱側(cè)面上從A到C的最短路徑為線段AC,AC=eq\r(22+62)=2eq\r(10)..]三、解答題9.用一張4×8(cm2)的矩形硬紙卷成圓柱的側(cè)面,求該圓柱的表面積?解析:方法一如圖(1)所示,以矩形8cm的邊長為母線長,把矩形硬紙卷成圓柱側(cè)面,設(shè)OA為底面圓的半徑,此時底面圓的周長為2π·OA=4,得OA=eq\f(2,π),則兩底面面積之和為eq\f(8,π)cm2,又S側(cè)=32cm2,故此時該圓柱的表面積為eq\b\lc\(\rc\)(\a\vs4\al\co1(32+\f(8,π)))cm2.方法二如圖(2)所示,以矩形4cm的邊長為母線長,把矩形硬紙卷成圓柱側(cè)面,設(shè)OB為底面圓的半徑,此時底面圓的周長為2π·OB=8,得OB=eq\f(4,π),則兩底面面積之和為eq\f(32,π)cm2,又S側(cè)=32cm2,故此時該圓柱的表面積為eq\b\lc\(\rc\)(\a\vs4\al\co1(32+\f(32,π)))cm2.10.如圖是一個底面直徑為20cm的裝有一部分水的圓柱形玻璃杯,水中放著一個底面直徑為6cm,高為20cm的圓錐形鉛錘,且水面高于圓錐頂部,當(dāng)鉛錘從水中取出后,杯里的水將下降多少?[解]因為圓錐形鉛錘的體積為eq\f(1,3)×π×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,2)))2×20=60π(cm3),設(shè)水面下降的高度為xcm,則小圓柱的體積為πeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(20,2)))2x=100πx.所以有60π=100πx,解此方程得x=.故杯里的水將下降cm.[等級過關(guān)練]1.已知圓柱的側(cè)面展開圖矩形面積為S,底面周長為C,它的體積是()\f(C3,4πS) \f(4πS,C3)\f(CS,2π) \f(SC,4π)D解析:[設(shè)圓柱底面半徑為r,高為h,則eq\b\lc\{\rc\(\a\vs4\al\co1(Ch=S,C=2πr)),∴r=eq\f(C,2π),h=eq\f(S,C).∴V=πr2·h=πeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(C,2π)))2·eq\f(S,C)=eq\f(SC,4π).]2.在△ABC中,AC=2,BC=2,∠ACB=120°,若△ABC繞直線BC旋轉(zhuǎn)一周,則所形成的幾何體的表面積是()A.(6+2eq\r(3))π B.6πC.(9+2eq\r(3))π D.2eq\r(3)πA解析:△ABC繞直線BC旋轉(zhuǎn)一周,所形成的幾何體是一個大圓錐去掉一個小圓錐,因為AC=2,BC=2,∠ACB=120°,所以O(shè)A=eq\r(3),AB=2eq\r(3),所以所形成的幾何體的表面積是π×eq\r(3)×(2+2eq\r(3))=(6+2eq\r(3))π.3.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是寸.(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)3解析:[圓臺的軸截面是下底長為12寸,上底長為28寸,高為18寸的等腰梯形,雨水線恰為中位線,故雨水線直徑是20寸,所以降水量為eq\f(\f(π,3)102+10×6+62×9,π×142)=3(寸).]4.如圖,已知底面半徑為r的圓柱被一個平面所截,剩下部分母線長的最大值為a,最小值為b.那么圓柱被截后剩下部分的體積是.eq\f(πr2a+b,2)解析:[采取補體方法,相當(dāng)于一個母線長為a+b的圓柱截成了兩個體積相等的部分,所以剩下部分的體積V=eq\f(πr2a+b,2).]5.如圖,已知一個圓錐的底面半徑與高均為2,且在這個圓錐中有一個高為x的圓柱.求:(1)用x表示此圓柱的側(cè)面積表達式;(2)當(dāng)此圓柱的側(cè)面積最大時,求此圓柱的體積.解析:(1)設(shè)圓柱的半徑為r,圓柱的高為x,則eq\f(r
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)租賃中的讓與擔(dān)保 甲方與乙方合同范本
- 2025年度體育賽事代理合同終止及賽事推廣合作協(xié)議4篇
- 2025年度商鋪物業(yè)管理與應(yīng)急響應(yīng)預(yù)案合同4篇
- 2025年度變壓器租賃及電力設(shè)備租賃期滿續(xù)租合同3篇
- 2024藝人廣告代言服務(wù)合同范本
- 2025年度主題餐廳投資合作協(xié)議范本3篇
- 2025年度水果種植基地與電商平臺合作合同3篇
- 2024跨境電子商務(wù)融資代建合同
- 2025年度安全生產(chǎn)信息化服務(wù)合同范本3篇
- 2025年度新能源汽車充電站車棚建設(shè)與運營承包合同4篇
- 2024高考復(fù)習(xí)必背英語詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護理)專業(yè)綜合知識考試題庫(含答案)
- 無人機應(yīng)用平臺實施方案
- 挪用公款還款協(xié)議書范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
- 【企業(yè)盈利能力探析文獻綜述2400字】
- 2019年醫(yī)養(yǎng)結(jié)合項目商業(yè)計劃書
- 2023年店鋪工程主管年終業(yè)務(wù)工作總結(jié)
評論
0/150
提交評論