2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年湖南省邵陽市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.A.A.0

B.

C.

D.∞

2.

A.2x+1B.2xy+1C.x2+1D.2xy

3.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

4.下列命題中正確的有().

5.

6.微分方程y+y=0的通解為().A.A.

B.

C.

D.

7.

8.設(shè)y1、y2是二階常系數(shù)線性齊次方程y"+p1y'+p2y=0的兩個(gè)特解,C1、C2為兩個(gè)任意常數(shù),則下列命題中正確的是A.A.C1y1+C2y2為該方程的通解

B.C1y1+C2y2不可能是該方程的通解

C.C1y1+C2y2為該方程的解

D.C1y1+C2y2不是該方程的解

9.A.A.

B.0

C.

D.1

10.

11.

12.

13.控制工作的實(shí)質(zhì)是()

A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)14.()。A.

B.

C.

D.

15.

16.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

17.A.0

B.1

C.e

D.e2

18.設(shè)函數(shù)/(x)=cosx,則

A.1

B.0

C.

D.-1

19.為二次積分為()。A.

B.

C.

D.

20.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

二、填空題(20題)21.

22.設(shè)是收斂的,則后的取值范圍為______.

23.

24.

25.26.設(shè)z=ln(x2+y),則全微分dz=__________。

27.

28.

29.二階常系數(shù)齊次線性方程y"=0的通解為__________。

30.冪級數(shù)的收斂半徑為______.31.

32.

33.

34.

35.

36.

37.

38.

39.40.

三、計(jì)算題(20題)41.將f(x)=e-2X展開為x的冪級數(shù).42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.

44.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則47.

48.證明:

49.求微分方程y"-4y'+4y=e-2x的通解.

50.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.51.求曲線在點(diǎn)(1,3)處的切線方程.

52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.求微分方程的通解.56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.60.

四、解答題(10題)61.

62.63.64.

65.

66.

67.

68.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

69.

70.五、高等數(shù)學(xué)(0題)71.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。六、解答題(0題)72.

參考答案

1.A本題考查的知識點(diǎn)為“有界變量與無窮小量的乘積為無窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問題中的所給條件.

2.B

3.DA,∫1+∞xdx==∞發(fā)散;

4.B解析:

5.B

6.D本題考查的知識點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

7.C

8.C

9.D本題考查的知識點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

可知應(yīng)選D.

10.B

11.D

12.A

13.A解析:控制工作的實(shí)質(zhì)是糾正偏差。

14.A

15.B

16.D

17.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

18.D

19.A本題考查的知識點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

20.D本題考查的知識點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

21.22.k>1本題考查的知識點(diǎn)為廣義積分的收斂性.

由于存在,可知k>1.

23.11解析:

24.

解析:

25.4π本題考查了二重積分的知識點(diǎn)。

26.

27.1

28.0

29.y=C1+C2x。

30.

;31.

32.2yex+x

33.2x-4y+8z-7=0

34.6x2

35.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識點(diǎn)。

36.

37.0

38.

39.

40.

41.

42.

43.

44.

45.函數(shù)的定義域?yàn)?/p>

注意

46.由等價(jià)無窮小量的定義可知

47.

48.

49.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

50.

51.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

52.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

53.

54.

列表:

說明

55.56.由二重積分物理意義知

57.

58.

59.

60.由一階線性微分方程通解公式有

61.

62.

63.

6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論