版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年福建省廈門市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
2.
3.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
4.
5.
6.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
7.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
8.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
9.
10.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
11.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
12.
13.A.A.發(fā)散B.絕對(duì)收斂C.條件收斂D.收斂性與k有關(guān)
14.
15.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
16.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx
17.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
18.
19.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
20.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
二、填空題(20題)21.設(shè)z=2x+y2,則dz=______。
22.
23.
24.
25.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分
26.微分方程y''+6y'+13y=0的通解為______.
27.
28.
29.
30.
31.設(shè)f(x)在x=1處連續(xù),=2,則=________。
32.
33.
34.
35.________。
36.
37.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
38.
39.過原點(diǎn)且與直線垂直的平面方程為______.
40.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.求微分方程的通解.
43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
45.
46.
47.
48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
52.求曲線在點(diǎn)(1,3)處的切線方程.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
54.證明:
55.將f(x)=e-2X展開為x的冪級(jí)數(shù).
56.
57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
58.
59.
60.
四、解答題(10題)61.設(shè)x2為f(x)的原函數(shù).求.
62.證明:ex>1+x(x>0)
63.(本題滿分10分)
64.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
65.
66.求微分方程xy'-y=x2的通解.
67.
68.
69.設(shè)D是由曲線x=1-y2與x軸、y軸,在第一象限圍成的有界區(qū)域.求:(1)D的面積S;(2)D繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積V.
70.
五、高等數(shù)學(xué)(0題)71.極限
=__________.
六、解答題(0題)72.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.
參考答案
1.A
2.B解析:
3.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
4.D
5.D
6.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
7.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
8.D
9.B解析:
10.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
11.A
12.D
13.C
14.C解析:
15.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
16.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
17.D
18.D
19.A由于
可知應(yīng)選A.
20.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
21.2dx+2ydy
22.(-33)
23.
24.
25.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
26.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
27.3/2
28.
29.R
30.x=2x=2解析:
31.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。
32.3
33.
34.eyey
解析:
35.
36.
37.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
38.
39.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
40.本題考查的知識(shí)點(diǎn)為無窮小的性質(zhì)。
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.
44.
列表:
說明
45.
46.
47.
則
48.函數(shù)的定義域?yàn)?/p>
注意
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.
51.由等價(jià)無窮小量的定義可知
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.由二重積分物理意義知
54.
55.
56.由一階線性微分方程通解公式有
57.
58.
59.
60.
61.解法1
由于x2為f(x)的原函數(shù),因此
解法2由于x2為f(x)的原函數(shù),因此
本題考查的知識(shí)點(diǎn)為定積分的計(jì)算.
62.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 定制旅游服務(wù)免責(zé)合同書
- 保險(xiǎn)銷售員產(chǎn)品推銷行為規(guī)范聲明
- 健康管理與社會(huì)工作作業(yè)指導(dǎo)書
- 醫(yī)療器械制造過程風(fēng)險(xiǎn)防控協(xié)議
- 智能家居設(shè)備互聯(lián)互通技術(shù)方案
- 文化創(chuàng)意產(chǎn)業(yè)項(xiàng)目投資框架協(xié)議
- SaaS模式在中小企業(yè)管理中的應(yīng)用推廣計(jì)劃
- 簡(jiǎn)易產(chǎn)品購銷合同
- 停車場(chǎng)經(jīng)營(yíng)擔(dān)保合同
- 客戶服務(wù)標(biāo)準(zhǔn)與服務(wù)流程說明
- 大數(shù)據(jù)平臺(tái)及風(fēng)險(xiǎn)預(yù)警系統(tǒng)采購項(xiàng)目需求說明書天津?yàn)I海農(nóng)村商業(yè)銀行【模板】
- 清華抬頭信紙
- 八年級(jí)心理健康教育《自控力——成功的標(biāo)尺》課件
- 中國(guó)動(dòng)畫之經(jīng)典賞析PPT課件
- 施工現(xiàn)場(chǎng)節(jié)電方法
- T∕CAMDI 041-2020 增材制造(3D打印)定制式骨科手術(shù)導(dǎo)板
- 水利工程安全生產(chǎn)組織機(jī)構(gòu)
- 廣東省佛山市南海區(qū)人民法院
- 實(shí)施農(nóng)村客運(yùn)公交化改造推進(jìn)城鄉(xiāng)客運(yùn)一體化發(fā)展
- 口腔修復(fù)學(xué)專業(yè)英語詞匯整理
- 【圖文】化學(xué)纖維質(zhì)量檢驗(yàn)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論