2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年江西省南昌市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。

A.eB.1C.1+e2

D.ln2

2.A.

B.

C.

D.

3.點(diǎn)作曲線運(yùn)動(dòng)時(shí),“勻變速運(yùn)動(dòng)”指的是()。

A.aτ為常量

B.an為常量

C.為常矢量

D.為常矢量

4.

5.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

6.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

7.下列命題正確的是()A.A.

B.

C.

D.

8.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

9.

10.

11.

12.A.A.

B.

C.

D.

13.

14.

15.

16.A.A.3B.1C.1/3D.0

17.

18.若,則下列命題中正確的有()。A.

B.

C.

D.

19.

20.A.A.0B.1/2C.1D.2

21.

22.

23.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c24.A.3B.2C.1D.1/2

25.曲線的水平漸近線的方程是()

A.y=2B.y=-2C.y=1D.y=-126.A.A.3

B.5

C.1

D.

27.A.3B.2C.1D.0

28.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。

A.查證法B.比較法C.佐證法D.邏輯法

29.

30.

31.下列各式中正確的是

A.A.

B.B.

C.C.

D.D.

32.

33.

34.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。

A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位

B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景

C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位

D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力

35.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)36.等于()。A.-1B.-1/2C.1/2D.1

37.

38.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

39.微分方程y"-4y=0的特征根為A.A.0,4B.-2,2C.-2,4D.2,4

40.

41.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

42.A.0B.2C.2f(-1)D.2f(1)43.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件44.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2

45.

46.設(shè)un≤aυn(n=1,2,…)(a>0),且收斂,則()A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確

47.

48.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

49.

50.

二、填空題(20題)51.

52.

53.54.55.56.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。57.過原點(diǎn)(0,0,0)且垂直于向量(1,1,1)的平面方程為________。

58.

59.

60.61.62.

63.

64.65.

66.

67.

68.

69.

70.三、計(jì)算題(20題)71.

72.求微分方程y"-4y'+4y=e-2x的通解.

73.

74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

76.

77.將f(x)=e-2X展開為x的冪級(jí)數(shù).78.

79.證明:

80.

81.求曲線在點(diǎn)(1,3)處的切線方程.82.83.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.85.求微分方程的通解.86.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

90.四、解答題(10題)91.92.93.設(shè)F(x)為f(x)的一個(gè)原函數(shù),且f(x)=xlnx,求F(x).

94.

95.設(shè)96.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.

97.

98.

99.100.五、高等數(shù)學(xué)(0題)101.已知f(x)的一個(gè)原函數(shù)為(1+sinz)lnz,求∫xf(x)dx。

六、解答題(0題)102.

參考答案

1.C

2.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為

3.A

4.C

5.C

6.C

7.D

8.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性。

9.A

10.C解析:

11.C

12.D

13.A

14.C解析:

15.D解析:

16.A

17.D

18.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

19.B

20.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

21.D解析:

22.D

23.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

24.B,可知應(yīng)選B。

25.D

26.A本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

故應(yīng)選A.

27.A

28.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。

29.B

30.D

31.B本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

對(duì)于選項(xiàng)A,當(dāng)0<x<1時(shí),x3<x2,則。對(duì)于選項(xiàng)B,當(dāng)1<x<2時(shí),Inx>(Inx)2,則。對(duì)于選項(xiàng)C,對(duì)于選讀D,不成立,因?yàn)楫?dāng)x=0時(shí),1/x無意義。

32.A

33.C解析:

34.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。

35.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

36.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

37.B

38.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

39.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B。

40.D

41.D

42.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

43.B

44.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).

45.C

46.D由正項(xiàng)級(jí)數(shù)的比較判定法知,若un≤υn,則當(dāng)收斂時(shí),也收斂;若也發(fā)散,但題設(shè)未交待un與υn的正負(fù)性,由此可分析此題選D。

47.A

48.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

49.A

50.A解析:

51.2

52.53.本題考查的知識(shí)點(diǎn)為重要極限公式。54.1.

本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

55.56.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。57.x+y+z=0

58.

解析:

59.3x+y-5z+1=03x+y-5z+1=0解析:

60.

61.4π本題考查了二重積分的知識(shí)點(diǎn)。62.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

63.(1+x)2

64.

65.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

66.x=-3

67.(03)(0,3)解析:

68.

本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見的錯(cuò)誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

69.70.k=1/2

71.

72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

73.由一階線性微分方程通解公式有

74.

75.

76.

77.

78.

79.

80.81.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

82.

83.

列表:

說明

84.由二重積分物理意義知

85.86.由等價(jià)無窮小量的定義可知

87.

88.函數(shù)的定義域?yàn)?/p>

注意

89.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

90.91.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利用直角坐標(biāo)系.

如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意

可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡(jiǎn)便些.

本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:

右端被積函數(shù)中丟掉了r,這是考生應(yīng)該注意的問題.通常若區(qū)域可以表示為

92.93.由題設(shè)可得知本題考查的知識(shí)點(diǎn)為兩個(gè):原函數(shù)的概念和分部積分法.

94.

95.

96.本題考查的知識(shí)點(diǎn)為選擇積分次序;計(jì)算二重積分.

由于不能利用初等函數(shù)表示出來,因此應(yīng)該將二重積分化為先對(duì)x積分后對(duì)y積分的二此積分.

97.

98.

99.100.解:對(duì)方程兩邊關(guān)于x求導(dǎo),y看做x的函數(shù),按中間變量處理

101.∫f"(x)dx=∫xdf(x)=xf(x)一∫

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論