版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山東省濟(jì)南市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(40題)1.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)
B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
2.當(dāng)x→0時(shí),3x是x的().
A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量
3.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
4.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
5.A.2B.-2C.-1D.1
6.
7.A.3B.2C.1D.1/2
8.
()A.x2
B.2x2
C.xD.2x
9.設(shè)有直線
當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1
B.0
C.
D.一1
10.A.
B.
C.
D.
11.A.A.
B.
C.
D.
12.∫sin5xdx等于().
A.A.
B.
C.
D.
13.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
14.
15.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
16.
17.
18.曲線y=ex與其過原點(diǎn)的切線及y軸所圍面積為
A.
B.
C.
D.
19.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-220.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
21.
22.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c23.()A.A.1B.2C.1/2D.-1
24.()是一個(gè)組織的精神支柱,是組織文化的核心。
A.組織的價(jià)值觀B.倫理觀C.組織精神D.組織素養(yǎng)25.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
26.
27.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
28.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
29.
30.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
31.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
32.
33.
34.
35.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-236.A.A.1
B.
C.
D.1n2
37.
38.若,則()。A.-1B.0C.1D.不存在
39.
40.
二、填空題(50題)41.
42.
43.設(shè)f(0)=0,f'(0)存在,則44.
45.
46.函數(shù)y=cosx在[0,2π]上滿足羅爾定理,則ξ=______.
47.
48.49.50.51.微分方程exy'=1的通解為______.
52.
53.
54.設(shè)z=sin(y+x2),則.
55.設(shè)z=sin(x2+y2),則dz=________。
56.
57.
58.
59.
60.61.
62.
63.曲線f(x)=x/x+2的鉛直漸近線方程為__________。
64.
65.
66.67.68.
69.
70.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
71.
72.
73.
74.
75.
76.
77.設(shè)f'(1)=2.則
78.
79.
80.
81.
82.83.84.
85.
86.
87.
88.
89.
90.=______.三、計(jì)算題(20題)91.92.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.93.求曲線在點(diǎn)(1,3)處的切線方程.94.
95.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.96.
97.
98.求微分方程y"-4y'+4y=e-2x的通解.
99.將f(x)=e-2X展開為x的冪級數(shù).100.
101.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
102.求微分方程的通解.103.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.104.證明:
105.
106.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則107.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.108.
109.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
110.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)111.
112.
113.
114.
115.
116.
117.
118.
119.
120.五、高等數(shù)學(xué)(0題)121.
六、解答題(0題)122.
參考答案
1.B
2.C本題考查的知識點(diǎn)為無窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
3.A
4.C本題考查的知識點(diǎn)為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
5.A
6.C
7.B,可知應(yīng)選B。
8.A
9.C本題考查的知識點(diǎn)為直線間的關(guān)系.
10.B
11.A
12.A本題考查的知識點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
13.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
14.D
15.C
16.B
17.C
18.A
19.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
20.D
21.D
22.C本題考查了二階常系數(shù)微分方程的特解的知識點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
23.C由于f'(2)=1,則
24.C解析:組織精神是組織文化的核心,是一個(gè)組織的精神支柱。
25.C
26.C解析:
27.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
28.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
29.D
30.D
31.B本題考查的知識點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
32.D
33.A
34.B
35.D本題考查的知識點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
36.C本題考查的知識點(diǎn)為定積分運(yùn)算.
因此選C.
37.A
38.D不存在。
39.C
40.A41.12dx+4dy.
本題考查的知識點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
42.
解析:43.f'(0)本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒有給出,f'(z)(x≠0)存在,也沒有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
44.
45.(00)
46.π
47.1/2
48.本題考查的知識點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
49.
50.1本題考查了冪級數(shù)的收斂半徑的知識點(diǎn)。51.y=-e-x+C本題考查的知識點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
52.-ln|3-x|+C
53.
解析:54.2xcos(y+x2)本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得
55.2cos(x2+y2)(xdx+ydy)
56.
57.1
58.4
59.
60.3xln3
61.3本題考查了冪級數(shù)的收斂半徑的知識點(diǎn).
所以收斂半徑R=3.
62.
解析:本題考查的知識點(diǎn)為不定積分的湊微分法.
63.x=-2
64.11解析:
65.
66.
67.解析:
68.
69.
70.
71.
72.
73.2本題考查了定積分的知識點(diǎn)。
74.2
75.y=f(0)76.本題考查的知識點(diǎn)為重要極限公式.
77.11解析:本題考查的知識點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
78.本題考查的知識點(diǎn)為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
79.
本題考查的知識點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.80.
本題考查的知識點(diǎn)為不定積分計(jì)算.
81.82.3yx3y-1
83.
本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
所給級數(shù)為缺項(xiàng)情形,
84.In2
85.
86.y+3x2+x
87.
88.11解析:
89.90.本題考查的知識點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
91.
92.
93.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
94.
則
95.
96.
97.
98.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 書法比賽活動(dòng)總結(jié)
- 幼兒園中班圣誕節(jié)教案
- 調(diào)節(jié)情緒的教案
- 初一學(xué)生學(xué)習(xí)計(jì)劃
- 部編版四年級上冊《道德與法治》第四單元《讓生活多一些綠色》教學(xué)設(shè)計(jì)教案
- 銷售部年度個(gè)人工作計(jì)劃模板2022
- 競選大隊(duì)委演講稿模板集合10篇
- 2025年藥妝項(xiàng)目合作計(jì)劃書
- 青春寄語短句8個(gè)字3篇
- 小孩夏季發(fā)燒
- 永煤集團(tuán)順和煤礦液壓銷齒彎道推車機(jī)技術(shù)規(guī)格書
- 九型人格測試之180題(完整版)和答案解析
- 口內(nèi)病例分析
- 壓力管道內(nèi)審記錄(共5頁)
- LS-MASTER-K-指令手冊
- 堵蓋與膠貼在車身堵孔方面的應(yīng)用
- 清單計(jì)價(jià)規(guī)范附錄附表詳解PPT課件
- 光刻膠知識簡介
- 烏茲別克語字母表
- 微機(jī)室學(xué)生上機(jī)記錄
- 畢業(yè)設(shè)計(jì)(論文)基于單片機(jī)AT89C51的數(shù)字搶答器設(shè)計(jì)
評論
0/150
提交評論