版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省遼陽市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
2.
3.
4.
5.A.A.
B.
C.
D.
6.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)
B.x0為f(x)的極小值點(diǎn)
C.x0不為f(x)的極值點(diǎn)
D.x0可能不為f(x)的極值點(diǎn)
7.
8.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
9.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().
A.3
B.
C.1
D.1/3
10.
11.
12.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
13.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
14.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在
15.()。A.2πB.πC.π/2D.π/4
16.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().
A.
B.x2
C.2x
D.2
17.
18.函數(shù)在(-3,3)內(nèi)展開成x的冪級數(shù)是()。
A.
B.
C.
D.
19.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
20.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
21.A.
B.0
C.ln2
D.-ln2
22.設(shè)k>0,則級數(shù)為().A.A.條件收斂B.絕對收斂C.發(fā)散D.收斂性與k有關(guān)
23.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x
24.A.A.2B.1C.0D.-1
25.冪級數(shù)的收斂半徑為()A.1B.2C.3D.4
26.
27.。A.
B.
C.
D.
28.
29.
30.
31.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
32.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
33.
34.A.
B.0
C.
D.
35.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
36.
A.2x+1B.2xy+1C.x2+1D.2xy37.A.A.
B.0
C.
D.1
38.()。A.
B.
C.
D.
39.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
40.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
41.
42.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
43.
44.
45.
46.
47.A.A.1
B.3
C.
D.0
48.()。A.e-6
B.e-2
C.e3
D.e6
49.A.A.2B.1C.1/2D.0
50.
二、填空題(20題)51.
52.53.
54.
55.
56.
57.
58.
59.設(shè)y=cosx,則dy=_________。
60.
61.
62.
63.微分方程y'=0的通解為______.
64.
65.設(shè)函數(shù)y=x3,則y'=________.
66.
67.y=lnx,則dy=__________。
68.
69.
70.三、計(jì)算題(20題)71.72.求微分方程的通解.73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.74.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.
78.
79.求曲線在點(diǎn)(1,3)處的切線方程.80.
81.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
82.將f(x)=e-2X展開為x的冪級數(shù).83.84.證明:85.86.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則四、解答題(10題)91.求∫xcosx2dx。
92.93.
94.
95.
96.
97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.當(dāng)x→0+時(shí),()與x是等價(jià)無窮小量。
A.
B.1n(1+x)
C.x2(x+1)
D.
六、解答題(0題)102.(本題滿分8分)
參考答案
1.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
2.C
3.A
4.C
5.D
6.A本題考查的知識點(diǎn)為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應(yīng)選A.
7.C
8.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
9.A解析:本題考查的知識點(diǎn)為判定極值的必要條件.
由于y=x3-ax,y'=3x2-a,令y'=0,可得
由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知
故應(yīng)選A.
10.A解析:
11.C解析:
12.C
13.C
14.C本題考查的知識點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).
函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.
函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).
函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
15.B
16.D解析:本題考查的知識點(diǎn)為原函數(shù)的概念.
由于x2為f(x)的原函數(shù),因此
f(x)=(x2)'=2x,
因此
f'(x)=2.
可知應(yīng)選D.
17.B解析:
18.B
19.D
20.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
21.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
22.A本題考查的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂.
由于為萊布尼茨級數(shù),為條件收斂.而為萊布尼茨級數(shù)乘以數(shù)-k,可知應(yīng)選A.
23.C本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
24.C
25.A由于可知收斂半徑R==1.故選A。
26.B
27.A本題考查的知識點(diǎn)為定積分換元積分法。
因此選A。
28.B
29.A
30.C解析:
31.C本題考查的知識點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
32.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
33.A解析:
34.A
35.C
36.B
37.D本題考查的知識點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
可知應(yīng)選D.
38.A
39.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
z=y3x
是關(guān)于y的冪函數(shù),因此
故應(yīng)選D.
40.B
41.B
42.A
43.A
44.D
45.D解析:
46.D
47.B本題考查的知識點(diǎn)為重要極限公式.可知應(yīng)選B.
48.A
49.D
50.B解析:
51.00解析:52.1
53.
54.0
55.(-∞2)(-∞,2)解析:
56.1
57.
58.
59.-sinxdx60.e-1/2
61.
62.63.y=C1本題考查的知識點(diǎn)為微分方程通解的概念.
微分方程為y'=0.
dy=0.y=C.
64.x(asinx+bcosx)
65.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識點(diǎn)。因?yàn)閥=x3,所以y'=3x2
66.
解析:
67.(1/x)dx
68.
69.
70.
71.
72.
73.
74.
75.
列表:
說明
76.函數(shù)的定義域?yàn)?/p>
注意
77.
則
78.79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.由一階線性微分方程通解公式有
81.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南職教高考醫(yī)學(xué)類專業(yè)理論考試題庫(含答案)
- 2025年畢節(jié)職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年武漢工貿(mào)職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2024喜劇綜藝年度報(bào)告
- 2025春季新學(xué)期,中小學(xué)校長在全體教師大會上發(fā)言:從電影《熊出沒重啟未來》破局解鎖新學(xué)期教育密碼
- 10kV配電站房工程的電氣設(shè)計(jì)方案與性能分析
- 幼兒園組織活動(dòng)設(shè)計(jì)策劃方案五篇
- 商業(yè)街店面租賃合同范本
- 幼兒園中班冬季教育活動(dòng)策劃方案五篇
- 2024年綠色能源產(chǎn)業(yè)投資合作合同
- 2025-2030年中國納米氧化鋁行業(yè)發(fā)展前景與投資戰(zhàn)略研究報(bào)告新版
- 2025年度正規(guī)離婚協(xié)議書電子版下載服務(wù)
- 2025年貴州蔬菜集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025光伏組件清洗合同
- 電力電纜工程施工組織設(shè)計(jì)
- 2024年網(wǎng)格員考試題庫完美版
- 《建筑與市政工程防水規(guī)范》解讀
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 醫(yī)生給病人免責(zé)協(xié)議書(2篇)
- 人教版(2024年新教材)七年級上冊英語Unit 7 Happy Birthday 單元整體教學(xué)設(shè)計(jì)(5課時(shí))
- 口腔粘膜常見疾病
評論
0/150
提交評論