2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

3.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小4.A.-cosxB.-ycosxC.cosxD.ycosx5.A.1-cosxB.1+cosxC.2-cosxD.2+cosx6.A.A.0

B.

C.

D.∞

7.下列等式中正確的是()。A.

B.

C.

D.

8.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散9.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

10.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

11.微分方程y"-4y=0的特征根為A.A.0,4B.-2,2C.-2,4D.2,412.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1

13.

14.()。A.e-2

B.e-2/3

C.e2/3

D.e2

15.A.-1

B.1

C.

D.2

16.()A.A.2xy+y2

B.x2+2xy

C.4xy

D.x2+y2

17.

18.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)19.A.A.-3/2B.3/2C.-2/3D.2/3

20.

二、填空題(20題)21.

22.微分方程y=0的通解為.23.24.25.26.27.28.∫(x2-1)dx=________。29.

30.

31.32.

33.

34.35.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.36.

37.

38.過(guò)點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為_(kāi)_____.

39.

40.設(shè)y=lnx,則y'=_________。

三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則43.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).46.

47.證明:48.49.求曲線在點(diǎn)(1,3)處的切線方程.

50.求微分方程y"-4y'+4y=e-2x的通解.

51.求微分方程的通解.

52.

53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.55.

56.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.計(jì)算

62.設(shè)y=x2+2x,求y'。

63.

64.

65.

66.一象限的封閉圖形.

67.

68.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。

69.

70.設(shè)f(x)=x-5,求f'(x)。

五、高等數(shù)學(xué)(0題)71.

________.

六、解答題(0題)72.

參考答案

1.A

2.B

3.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

4.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

5.D

6.A本題考查的知識(shí)點(diǎn)為“有界變量與無(wú)窮小量的乘積為無(wú)窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問(wèn)題中的所給條件.

7.B

8.C解析:

9.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對(duì)應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

10.B

11.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B。

12.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

13.A

14.B

15.A

16.A

17.B

18.A

19.A

20.B

21.00解析:22.y=C.

本題考查的知識(shí)點(diǎn)為微分方程通解的概念.

微分方程為y=0.

dy=0.y=C.

23.24.e.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

25.

26.27.F(sinx)+C本題考查的知識(shí)點(diǎn)為不定積分的換元法.

由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,

28.

29.

30.0

31.32.對(duì)已知等式兩端求導(dǎo),得

33.1/21/2解析:34.F(sinx)+C35.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

36.

37.338.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

39.11解析:

40.1/x

41.

42.由等價(jià)無(wú)窮小量的定義可知

43.44.函數(shù)的定義域?yàn)?/p>

注意

45.

列表:

說(shuō)明

46.

47.

48.49.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.

52.

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

55.由一階線性微分方程通解公式有

56.

57.

58.

59.

60.由二

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論