下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)橢圓的左焦點(diǎn)的直線過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.2.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.3.設(shè)命題:,,則為A., B.,C., D.,4.已知雙曲線C:=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)原點(diǎn)O作斜率為的直線交C的右支于點(diǎn)A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+15.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)()A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變6.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,7.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.8.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,9.過(guò)雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.10.集合的真子集的個(gè)數(shù)是()A. B. C. D.11.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.12.已知函數(shù),,若對(duì),且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_(kāi)__________.14.點(diǎn)是曲線()圖象上的一個(gè)定點(diǎn),過(guò)點(diǎn)的切線方程為,則實(shí)數(shù)k的值為_(kāi)_____.15.已知復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)是_____,_____.16.若x,y滿足,且y≥?1,則3x+y的最大值_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,若(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)在和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:.18.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無(wú)論實(shí)數(shù)取何值,直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過(guò)點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.19.(12分)已知圓外有一點(diǎn),過(guò)點(diǎn)作直線.(1)當(dāng)直線與圓相切時(shí),求直線的方程;(2)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長(zhǎng).20.(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.21.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).22.(10分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.2.D【解析】
根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長(zhǎng),可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個(gè)三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長(zhǎng)為2的正方體中,由三視圖可知,該幾何體的棱長(zhǎng)為,它是由棱長(zhǎng)為2的正方體沿各棱中點(diǎn)截去8個(gè)三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對(duì)于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.3.D【解析】
直接利用全稱命題的否定是特稱命題寫(xiě)出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.4.B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點(diǎn),則,整理計(jì)算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,考查學(xué)生的計(jì)算能力,是中檔題.5.A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點(diǎn)畫(huà)法中的點(diǎn)坐標(biāo)求出,進(jìn)而求出的解析式,與對(duì)比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有向左平移個(gè)長(zhǎng)度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變)即可.故選:A【點(diǎn)睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.6.D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過(guò)點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過(guò)點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無(wú)窮大,最小可到無(wú)窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.7.A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問(wèn)題,一般求橢圓離心率的問(wèn)題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.8.D【解析】
根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.9.C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.10.C【解析】
根據(jù)含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,計(jì)算可得;【詳解】解:集合含有個(gè)元素,則集合的真子集有(個(gè)),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對(duì)于含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,屬于基礎(chǔ)題.11.C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.12.D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)?,故,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無(wú)窮;對(duì)函數(shù),當(dāng)時(shí),;根據(jù)題意,對(duì),且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問(wèn)題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問(wèn)題,屬綜合困難題.二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時(shí)輸出的b值為13.故答案為13.14.1【解析】
求出導(dǎo)函數(shù),由切線斜率為4即導(dǎo)數(shù)為4求出切點(diǎn)橫坐標(biāo),再由切線方程得縱坐標(biāo)后可求得.【詳解】設(shè),由題意,∴,,,即,∴,.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,函數(shù)圖象某點(diǎn)處的切線的斜率就是該點(diǎn)處導(dǎo)數(shù)值.本題屬于基礎(chǔ)題.15.【解析】
直接利用復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),從而得到復(fù)數(shù)的共軛復(fù)數(shù)和的模.【詳解】,則復(fù)數(shù)的共軛復(fù)數(shù)為,且.故答案為:;.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.16.5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】
(Ⅰ),,兩式相減化簡(jiǎn)整理利用等比數(shù)列的通項(xiàng)公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯(cuò)位相減法即可得出.【詳解】解:(Ⅰ)因?yàn)椋?,兩式相減可得,,故,因?yàn)槭堑缺葦?shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.18.(1)見(jiàn)解析,(2)函數(shù)存在唯一零點(diǎn).【解析】
(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點(diǎn)存在性定理即可求出零點(diǎn)個(gè)數(shù).【詳解】所以直線方程為即,恒過(guò)點(diǎn)將代入直線方程,得考慮方程即,等價(jià)于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點(diǎn),即函數(shù)存在唯一零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過(guò)定點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)存在性定理,屬于難題.19.(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長(zhǎng)公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時(shí),直線的方程為,滿足題意當(dāng)斜率存在時(shí),設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時(shí),直線的方程為圓心到直線的距離為∴弦長(zhǎng)為【點(diǎn)睛】本題考查了直線的方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式及弦長(zhǎng)公式,培養(yǎng)了學(xué)生分析問(wèn)題與解決問(wèn)題的能力.20.(1)證明見(jiàn)解析(2)【解析】
(1)由已知線面垂直得,結(jié)合菱形對(duì)角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫(xiě)出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)樗倪呅问橇庑?,所?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫?,所以為平面的一個(gè)法向量,且所以,.所以二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問(wèn)題轉(zhuǎn)化為計(jì)算.21.(1)(2)(2,).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版園林綠化升降車租賃協(xié)議
- 前臺(tái)轉(zhuǎn)正自我鑒定合集12篇
- 2024年紅蘋(píng)果飲料項(xiàng)目可行性研究報(bào)告
- 2024年中國(guó)PE水龍帶市場(chǎng)調(diào)查研究報(bào)告
- 2024年特種紙掛歷項(xiàng)目可行性研究報(bào)告
- 企業(yè)網(wǎng)站策劃書(shū)(匯編15篇)
- 2022護(hù)士自我鑒定怎么寫(xiě)10篇
- 免燒磚購(gòu)銷合同
- 活動(dòng)策劃方案范文集錦八篇
- 監(jiān)控設(shè)備安裝合同
- 輔導(dǎo)員工作匯報(bào)課件
- 企業(yè)清產(chǎn)核資報(bào)表
- 新版小學(xué)道德與法治課程標(biāo)準(zhǔn)的解讀與梳理培訓(xùn)課件(道德與法治新課程標(biāo)準(zhǔn)培訓(xùn))
- 公司金融學(xué)張德昌課后參考答案
- DB3302-T 1015-2022 城市道路清掃保潔作業(yè)規(guī)范
- 管線探測(cè)技術(shù)介紹
- 手術(shù)室提高患者術(shù)中保溫措施的執(zhí)行率PDCA課件
- 基本事實(shí)要素表
- 市場(chǎng)監(jiān)督管理局企業(yè)注冊(cè)、經(jīng)營(yíng)范圍登記規(guī)范表述:行業(yè)分類及條目代碼
- 2023年中國(guó)工商銀行度校園招聘筆試題庫(kù)及答案解析
- 機(jī)械系統(tǒng)運(yùn)動(dòng)方案設(shè)計(jì)示例
評(píng)論
0/150
提交評(píng)論