2021-2022學(xué)年上海市十二校高三下第一次測試數(shù)學(xué)試題含解析_第1頁
2021-2022學(xué)年上海市十二校高三下第一次測試數(shù)學(xué)試題含解析_第2頁
2021-2022學(xué)年上海市十二校高三下第一次測試數(shù)學(xué)試題含解析_第3頁
2021-2022學(xué)年上海市十二校高三下第一次測試數(shù)學(xué)試題含解析_第4頁
2021-2022學(xué)年上海市十二校高三下第一次測試數(shù)學(xué)試題含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余15頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)(或)的圖象大致是()A. B. C. D.2.設(shè),滿足約束條件,則的最大值是()A. B. C. D.3.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.4.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽爻的概率是()A. B. C. D.5.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點(diǎn),又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時(shí),平面 D.當(dāng)m變化時(shí),直線l的位置不變7.集合,則()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.639.若集合,,則()A. B. C. D.10.偶函數(shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),,求()A. B. C. D.11.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.212.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切二、填空題:本題共4小題,每小題5分,共20分。13.已知為正實(shí)數(shù),且,則的最小值為____________.14.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.15.在平面直角坐標(biāo)系中,圓.已知過原點(diǎn)且相互垂直的兩條直線和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線的斜率為_____________.16.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.19.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).20.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.21.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線和圓的普通方程;(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.2.D【解析】

作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.3.C【解析】

對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.4.C【解析】

利用組合的方法求所求的事件的對(duì)立事件,即該重卦沒有陽爻或只有1個(gè)陽爻的概率,再根據(jù)兩對(duì)立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽爻”的對(duì)立事件是“該重卦沒有陽爻或只有1個(gè)陽爻”,其中,沒有陽爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽爻的情況有種,故,所以該重卦至少有2個(gè)陽爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對(duì)立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.5.B【解析】

先解不等式化簡兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.6.C【解析】

根據(jù)線面平行與垂直的判定與性質(zhì)逐個(gè)分析即可.【詳解】因?yàn)?所以,因?yàn)镋、F分別是AB、AD的中點(diǎn),所以,所以,因?yàn)槊婷?所以.選項(xiàng)A、D顯然成立;因?yàn)?平面,所以平面,因?yàn)槠矫?所以,所以B項(xiàng)成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項(xiàng)不成立.故選:C【點(diǎn)睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.7.D【解析】

利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見集合的符號(hào)表示,本題屬于基礎(chǔ)題.8.B【解析】

根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.9.B【解析】

根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點(diǎn)睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補(bǔ)集關(guān)系的應(yīng)用,屬于中檔題.10.D【解析】

推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.11.B【解析】

對(duì)復(fù)數(shù)進(jìn)行化簡計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡單題.12.D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.故答案為:【點(diǎn)睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.14.【解析】

根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.15.【解析】

設(shè):,:,利用點(diǎn)到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.16.1【解析】

令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)?,且,所以,所以,矛?所以不能同時(shí)滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因?yàn)?,所以,?解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計(jì)算,要結(jié)合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.18.(1)當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】

(1)對(duì)求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對(duì)求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)?,所以,?dāng)時(shí),令,得,令,得;當(dāng)時(shí),則,令,得,或,令,得;當(dāng)時(shí),,當(dāng)時(shí),則,令,得;綜上所述,當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時(shí),設(shè),又因?yàn)?,則,設(shè),則對(duì)于任意成立,所以在上是增函數(shù),所以對(duì)于,有,即,有,因?yàn)?,所以,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.19.(1)(2)三個(gè)零點(diǎn)【解析】

(1)由題意知恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對(duì)函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)?,又,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),導(dǎo)數(shù)的綜合應(yīng)用.在研究函數(shù)零點(diǎn)時(shí),有一種方法是把函數(shù)的零點(diǎn)轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),特別是利用分離參數(shù)法轉(zhuǎn)化為動(dòng)直線與函數(shù)圖象交點(diǎn)問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢(shì),得出結(jié)論.20.(1)直線普通方程:,曲線直角坐標(biāo)方程:;(2).【解析】

(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標(biāo)方程化為,根據(jù)極坐標(biāo)和直角坐標(biāo)互化原則可得其直角坐標(biāo)方程;(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義可知,利用韋達(dá)定理求得結(jié)果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標(biāo)方程可化為:則曲線的直角坐標(biāo)方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,整理可得:設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為:,則,【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用;求解距離之和的關(guān)鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達(dá)定理來進(jìn)行求解.21.(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長,圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論