版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.2.設(shè),則,則()A. B. C. D.3.設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.4.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過(guò)點(diǎn)且,則()A. B. C. D.5.是拋物線上一點(diǎn),是圓關(guān)于直線的對(duì)稱(chēng)圓上的一點(diǎn),則最小值是()A. B. C. D.6.已知等差數(shù)列的前13項(xiàng)和為52,則()A.256 B.-256 C.32 D.-327.的二項(xiàng)展開(kāi)式中,的系數(shù)是()A.70 B.-70 C.28 D.-288.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件9.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時(shí),f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)10.已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2511.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時(shí),三棱錐的外接球的表面積為_(kāi)_____.14.將2個(gè)相同的紅球和2個(gè)相同的黑球全部放入甲、乙、丙、丁四個(gè)盒子里,其中甲、乙盒子均最多可放入2個(gè)球,丙、丁盒子均最多可放入1個(gè)球,且不同顏色的球不能放入同一個(gè)盒子里,共有________種不同的放法.15.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.16.直線過(guò)圓的圓心,則的最小值是_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.18.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)19.(12分)已知為各項(xiàng)均為整數(shù)的等差數(shù)列,為的前項(xiàng)和,若為和的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)若,求最大的正整數(shù),使得.20.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.2.A【解析】
根據(jù)換底公式可得,再化簡(jiǎn),比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點(diǎn)睛】本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.3.C【解析】
根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過(guò)幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.4.C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計(jì)算能力.5.C【解析】
求出點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對(duì)稱(chēng)圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對(duì)稱(chēng)圓的方程為,設(shè)點(diǎn),則,當(dāng)時(shí),取最小值,因此,.故選:C.【點(diǎn)睛】本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計(jì)算,同時(shí)也考查了兩圓關(guān)于直線對(duì)稱(chēng)性的應(yīng)用,考查計(jì)算能力,屬于中等題.6.A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.7.A【解析】試題分析:由題意得,二項(xiàng)展開(kāi)式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.8.C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.9.B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時(shí)的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯(cuò)誤;選項(xiàng)B,因?yàn)椋?,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯(cuò)誤;選項(xiàng)D,,選項(xiàng)D錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.10.D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng),即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長(zhǎng),且最大內(nèi)角為,由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,,d=-2前項(xiàng)和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問(wèn)題,同時(shí)還考查了余弦定理的應(yīng)用.11.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.12.C【解析】
根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個(gè)選項(xiàng)可得結(jié)果.【詳解】對(duì)于,當(dāng)為內(nèi)與垂直的直線時(shí),不滿足,錯(cuò)誤;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,但,錯(cuò)誤;對(duì)于,由,知:,又,,正確;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對(duì)于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長(zhǎng),即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長(zhǎng)度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過(guò)點(diǎn)作面,垂足為,過(guò)點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時(shí),,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過(guò)點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.14.【解析】
討論裝球盒子的個(gè)數(shù),計(jì)算得到答案.【詳解】當(dāng)四個(gè)盒子有球時(shí):種;當(dāng)三個(gè)盒子有球時(shí):種;當(dāng)兩個(gè)盒子有球時(shí):種.故共有種,故答案為:.【點(diǎn)睛】本題考查了排列組合的綜合應(yīng)用,意在考查學(xué)生的理解能力和應(yīng)用能力.15.【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.16.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時(shí)取等號(hào).∴則的最小值是4.故答案為:4.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2)【解析】
(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫(xiě)出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時(shí),.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問(wèn)題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.18.(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過(guò)必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡(jiǎn)得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題19.(1)(2)1008【解析】
(1)用基本量求出首項(xiàng)和公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因?yàn)閿?shù)列為各項(xiàng)均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,考查裂項(xiàng)相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20.(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于土地流轉(zhuǎn)協(xié)議
- 顱縫早閉病因介紹
- 醫(yī)患爭(zhēng)議調(diào)解協(xié)議書(shū)
- 2025就業(yè)協(xié)議樣本
- 河南省許昌市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版質(zhì)量測(cè)試(下學(xué)期)試卷及答案
- 《電機(jī)技術(shù)應(yīng)用》課件 3.1.2 直流電機(jī)電樞繞組
- (可研報(bào)告)天津東疆保稅區(qū)設(shè)立spv公司可行性報(bào)告
- (2024)紙塑復(fù)合袋生產(chǎn)建設(shè)項(xiàng)目可行性研究報(bào)告(一)
- (2024)觀光餐廳建設(shè)項(xiàng)目可行性研究報(bào)告(一)
- 2023年天津市濱海新區(qū)八所重點(diǎn)學(xué)校高考語(yǔ)文聯(lián)考試卷
- 園林工程智慧樹(shù)知到答案2024年浙江農(nóng)林大學(xué)
- 游泳社會(huì)指導(dǎo)專(zhuān)項(xiàng)理論知識(shí)題庫(kù)及參考答案
- 2025屆高考語(yǔ)文一輪總復(fù)習(xí):120個(gè)文言實(shí)詞
- ICU常用的鎮(zhèn)靜鎮(zhèn)痛藥物特點(diǎn)和應(yīng)用培訓(xùn)課件
- 2024-2030年中國(guó)飛行時(shí)間(ToF)傳感器行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 2024年新蘇教版科學(xué)六年級(jí)上冊(cè)全冊(cè)知識(shí)點(diǎn)
- 砼結(jié)構(gòu)構(gòu)件制造行業(yè)產(chǎn)業(yè)鏈協(xié)同與價(jià)值鏈優(yōu)化
- 人教版五年級(jí)數(shù)學(xué)上冊(cè)第四單元《可能性》全部集體備課教學(xué)設(shè)計(jì)
- 機(jī)械工業(yè)工程建設(shè)項(xiàng)目設(shè)計(jì)文件編制標(biāo)準(zhǔn)
- 《思想道德與法治》復(fù)習(xí)題(一)
- 《物聯(lián)網(wǎng)工程導(dǎo)論》課件 項(xiàng)目5 智慧小區(qū)系統(tǒng)集成架構(gòu)設(shè)計(jì)(6學(xué)時(shí))
評(píng)論
0/150
提交評(píng)論