版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年福建省泉州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.
3.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
4.A.A.π/4
B.π/2
C.π
D.2π
5.
6.
7.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
8.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
9.A.
B.
C.-cotx+C
D.cotx+C
10.
11.
12.。A.2B.1C.-1/2D.0
13.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx
14.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
15.構(gòu)件承載能力不包括()。
A.強度B.剛度C.穩(wěn)定性D.平衡性
16.
17.A.0B.2C.2f(-1)D.2f(1)
18.()。A.3B.2C.1D.0
19.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
20.若x→x0時,α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時,α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型
21.
22.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當x<-1時,f(x)<0;當x>-1時,f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點,但不是極值點B.x=-1不是駐點C.x=-1為極小值點D.x=-1為極大值點23.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
24.
25.當x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小26.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
27.
28.
29.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
30.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶31.()。A.e-2
B.e-2/3
C.e2/3
D.e2
32.
33.
34.A.I1=I2
B.I1>I2
C.I1<I2
D.無法比較
35.
36.A.A.-3/2B.3/2C.-2/3D.2/3
37.設(shè)f(x)在點x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
38.
39.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
40.
41.
42.
43.A.
B.
C.
D.
44.單位長度扭轉(zhuǎn)角θ與下列哪項無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
45.
46.下列函數(shù)中,在x=0處可導(dǎo)的是()
A.y=|x|
B.
C.y=x3
D.y=lnx
47.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5
48.函數(shù)等于().
A.0B.1C.2D.不存在
49.
50.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
二、填空題(20題)51.
52.
53.
54.
55.
56.冪級數(shù)的收斂半徑為________。
57.
58.59.
60.
61.設(shè)y=cosx,則y"=________。
62.
63.
64.冪級數(shù)的收斂半徑為______.
65.設(shè)y=3x,則y"=_________。
66.
67.
68.69.________。70.三、計算題(20題)71.72.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
73.
74.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.76.求曲線在點(1,3)處的切線方程.77.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
78.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.80.當x一0時f(x)與sin2x是等價無窮小量,則
81.
82.求微分方程y"-4y'+4y=e-2x的通解.
83.求微分方程的通解.84.將f(x)=e-2X展開為x的冪級數(shù).85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.87.證明:88.
89.90.
四、解答題(10題)91.
92.求函數(shù)的二階導(dǎo)數(shù)y''
93.
94.95.96.97.計算98.99.(本題滿分10分)將f(x)=ln(1+x2)展開為x的冪級數(shù).
100.
五、高等數(shù)學(xué)(0題)101.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對六、解答題(0題)102.
參考答案
1.D
2.D解析:
3.C方程x=z2中缺少坐標y,是以xOy坐標面上的拋物線x=z2為準線,平行于y軸的直線為母線的拋物柱面。所以選C。
4.B
5.C
6.C
7.C
8.D對照標準二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
9.C本題考查的知識點為不定積分基本公式.
10.B
11.C
12.A
13.B本題考查的知識點為導(dǎo)數(shù)的運算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
14.A
15.D
16.D
17.C本題考查了定積分的性質(zhì)的知識點。
18.A
19.C
20.D
21.C
22.C本題考查的知識點為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點,當x<-1時f(x)<0;當x>-1時,
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點,故應(yīng)選C.
23.B
24.D
25.D本題考查的知識點為無窮小階的比較。
由于,可知點x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。
26.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
27.A
28.B解析:
29.C
30.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。
31.B
32.B
33.A
34.C因積分區(qū)域D是以點(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
35.A
36.A
37.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。
38.B解析:
39.C
40.B
41.B
42.C
43.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
44.A
45.A
46.C選項A中,y=|x|,在x=0處有尖點,即y=|x|在x=0處不可導(dǎo);選項B中,在x=0處不存在,即在x=0處不可導(dǎo);選項C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實上,在x=0點就沒定義).
47.B
48.C解析:
49.B
50.C
51.
52.
53.
解析:
54.2x-4y+8z-7=0
55.56.因為級數(shù)為,所以用比值判別法有當<1時收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。
57.58.
59.本題考查的知識點為:求解可分離變量的微分方程.
60.y=2x+1
61.-cosx
62.x+2y-z-2=0
63.
64.365.3e3x
66.π/8
67.22解析:
68.
69.
70.
71.
72.
73.
74.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%75.函數(shù)的定義域為
注意
76.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.
78.
79.
列表:
說明
80.由等價無窮小量的定義可知
81.
82.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
83.
84.
85.
86.由二重積分物理意義知
87.
88.由一階線性微分方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:教育元宇宙的應(yīng)用倫理研究
- 2025年嚴于修身學(xué)習(xí)心得體會(5篇)
- 疫情防護2025年度企業(yè)員工培訓(xùn)與心理咨詢合同3篇
- 二零二五年度城市綠化養(yǎng)護勞務(wù)分包合同書4篇
- 二零二五年度城市住宅出售協(xié)議書(含裝修及家具配置)4篇
- 二零二五年鍋爐維修工程承包與環(huán)保驗收協(xié)議3篇
- 2024手繪藝術(shù)作品拍賣合同協(xié)議3篇
- 安徽省二零二五年度住房租賃市場租賃糾紛處理合同
- 2025年護林員勞動合同書(含森林資源保護培訓(xùn))3篇
- 2025版土地經(jīng)營權(quán)租賃與農(nóng)業(yè)產(chǎn)業(yè)扶貧合同3篇
- 消防產(chǎn)品目錄(2025年修訂本)
- 地方性分異規(guī)律下的植被演替課件高三地理二輪專題復(fù)習(xí)
- 光伏項目風(fēng)險控制與安全方案
- 9.2提高防護能力教學(xué)設(shè)計 2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 催收培訓(xùn)制度
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認證機構(gòu)要求》中文版(機翻)
- 2024年廣東省高考地理真題(解析版)
- 2024高考物理廣東卷押題模擬含解析
- 人教版五年級上冊數(shù)學(xué)簡便計算大全600題及答案
- GB/T 15945-1995電能質(zhì)量電力系統(tǒng)頻率允許偏差
- GB 32311-2015水電解制氫系統(tǒng)能效限定值及能效等級
評論
0/150
提交評論