![新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析_第1頁](http://file4.renrendoc.com/view/f3f8a012f84823a5d64c3c09944210a6/f3f8a012f84823a5d64c3c09944210a61.gif)
![新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析_第2頁](http://file4.renrendoc.com/view/f3f8a012f84823a5d64c3c09944210a6/f3f8a012f84823a5d64c3c09944210a62.gif)
![新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析_第3頁](http://file4.renrendoc.com/view/f3f8a012f84823a5d64c3c09944210a6/f3f8a012f84823a5d64c3c09944210a63.gif)
![新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析_第4頁](http://file4.renrendoc.com/view/f3f8a012f84823a5d64c3c09944210a6/f3f8a012f84823a5d64c3c09944210a64.gif)
![新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析_第5頁](http://file4.renrendoc.com/view/f3f8a012f84823a5d64c3c09944210a6/f3f8a012f84823a5d64c3c09944210a65.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析廣東省新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析PAGE23-廣東省新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理含解析廣東省新興第一中學(xué)2020屆高三數(shù)學(xué)上學(xué)期期末教學(xué)質(zhì)量檢測試題理(含解析)一、選擇題:共12題,每題5分,共60分。在每題給出的四個選項中,只有一項是符合題目要求的。1。現(xiàn)有10個數(shù),它們能構(gòu)成一個以1為首項,為公比的等比數(shù)列,若從這個10個數(shù)中隨機抽取一個數(shù),則它小于8的概率是()A. B。 C。 D?!敬鸢浮緽【解析】【分析】先由題意寫出成等比數(shù)列的10個數(shù),然后找出小于8的項的個數(shù),代入古典概率的計算公式即可求解【詳解】解:由題意成等比數(shù)列的10個數(shù)為:1,,,其中小于8的項有:1,,,,,共6個數(shù)這10個數(shù)中隨機抽取一個數(shù),則它小于8的概率是.故選:.【點睛】本題主要考查了等比數(shù)列的通項公式及古典概率的計算公式的應(yīng)用,屬于基礎(chǔ)試題2。在平行四邊形ABCD中,,則該四邊形的面積為()A。 B。 C.5 D。10【答案】D【解析】【分析】利用向量夾角公式可得,即可得出,.【詳解】,,所以,所以.故選:D【點睛】本題考查了向量的數(shù)量積求向量的夾角,需熟記向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題。3.設(shè)實數(shù)滿足,則的最大值和最小值分別為()A.1, B., C。1, D。,【答案】B【解析】【分析】由不等式組作出可行域,令,數(shù)形結(jié)合求出的最大值和最小值.【詳解】由作出可行域如圖,令,則,由圖可知,當(dāng)經(jīng)過時,截距最大,最大值為;當(dāng)過時,截距最小,最小值為,的最大值和最小值分別為。故選:B【點睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出約束條件的可行域、理解目標(biāo)函數(shù)表示的幾何意義,屬于基礎(chǔ)題.4.設(shè)是公比不為-1的等比數(shù)列,它的前項和,前項和與前項和分別為,則下列等式中恒成立的是()A。 B.C。 D?!敬鸢浮緿【解析】【分析】方法一:取一個具體的等比數(shù)列驗證即可。方法二:由題意可得也成等比數(shù)列,利用等比中項即可求解.【詳解】方法一:取等比數(shù)列,令得代入驗證,只有選項D滿足.方法二:由題意可得:若是公比不為-1的等比數(shù)列,則也成等比數(shù)列,即也成等比數(shù)列,故,展開可得:,即故選:D【點睛】本題考查了等比數(shù)列前項和的性質(zhì),需熟記為等比數(shù)列也為等比數(shù)列,屬于基礎(chǔ)題。5.已知雙曲線(a〉0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為()A。 B. C。 D.【答案】D【解析】【分析】根據(jù)漸近線與拋物線準(zhǔn)線交點坐標(biāo),可知P的值,寫出拋物線焦點坐標(biāo),可求雙曲線中,再結(jié)合雙曲線漸近線即可求出b,從而求出焦距.【詳解】∵雙曲線的一條漸近線與拋物線的準(zhǔn)線交于點(-2,-1),∴=-2,即p=4,∴拋物線焦點F(2,0),又雙曲線左頂點(-a,0)到拋物線焦點距離為4,∴a=2,又點(-2,-1)在雙曲線漸近線上,∴漸近線方程為y=x,∵a=2,b=1,∴c=,∴雙曲線的焦距為2c=2,故選D.【點睛】本題主要考查雙曲線,拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì),意在考查學(xué)生的運算求解能力,屬于中檔題.6。若,,則()A。 B. C. D.【答案】D【解析】【分析】利用集合的補集的定義求出的補集;利用子集的定義判斷出.【詳解】解:,,,,故選:.【點睛】本題考查利用集合的交集、補集、并集定義求交集、補集、并集;利用集合包含關(guān)系的定義判斷集合的包含關(guān)系.7。是虛數(shù)單位,復(fù)數(shù)為純虛數(shù),則實數(shù)為(
)A。 B。 C. D。【答案】A【解析】【分析】利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后令實部為0,虛部不為0建立關(guān)于的方程組解出即可.【詳解】復(fù)數(shù)為純虛數(shù),解得,故選:A?!军c睛】本題主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)、復(fù)數(shù)的模這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.8。已知函數(shù),若,則()A。 B. C。 D?!敬鸢浮緾【解析】【分析】首先計算出,再根據(jù)的值求出,即可得解?!驹斀狻拷猓海?解得。于是,故選:【點睛】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意分段函數(shù)的性質(zhì)的合理運用.9?!皵?shù)列既是等差數(shù)列又是等比數(shù)列”是“數(shù)列是常數(shù)列”的().A.充分不必要條件 B。必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】數(shù)列既是等差數(shù)列又是等比數(shù)列,則可知是常數(shù)列,所以充分性成立;若是常數(shù)列,則不是等比數(shù)列,所以必要性不成立,所以“數(shù)列既是等差數(shù)列又是等比數(shù)列”是“數(shù)列是常數(shù)列"的充分不必要條件,故選A.10.函數(shù)的圖象如圖所示,則下列結(jié)論成立的是()A. B. C。 D?!敬鸢浮緾【解析】【分析】根據(jù)定義域及特殊點可判斷.【詳解】解:∵的圖象與軸交于,且點的縱坐標(biāo)為正,∴,故,定義域為其函數(shù)圖象間斷的橫坐標(biāo)為正,∴,故.故選:【點睛】本題考查函數(shù)圖象的識別,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題。11。已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是()A.(-∞,0] B.(-∞,1]C。[-2,1] D.[-2,0]【答案】D【解析】當(dāng)x≤0時,f(x)=-x2+2x≤0恒成立,由|f(x)|≥ax得,x2-2x≥ax,整理得x2-(2+a)x≥0,由于g(x)=x2-(2+a)x≥0恒成立,因為g(0)=0,所以-≥0,解得a≥-2,x〉0時,由于|f(x)|>0,若|f(x)|≥ax恒成立,滿足ax≤0,同時滿足以上兩個條件-2≤a≤0.12.三棱錐中,平面,,的面積為2,則三棱錐的外接球體積的最小值為()A。 B。 C. D.【答案】C【解析】【分析】由題意畫出圖形,設(shè),由的面積為2,得,再由,得三角形外接圓的半徑,求出球心到平面的距離,再由勾股定理可得外接球的半徑,利用基本不等式求得最小值,代入球的體積公式求解.【詳解】解:如圖,設(shè),由的面積為2,得,,三角形外接圓半徑,平面,,到平面的距離為,設(shè)球的半徑為,則,當(dāng)且僅當(dāng)時“”成立.三棱錐的外接球體積的最小值為.故選:.【點睛】本題考查了棱錐與球的位置關(guān)系,考查正弦定理的應(yīng)用,屬于中檔題.二、填空題:共4題,每題5分,滿分共20分,把答案填在答題卷的橫線上。13.曲線y=x(3lnx+1)在點處的切線方程為________【答案】【解析】【詳解】函數(shù)的導(dǎo)數(shù)為,所以在的切線斜率為,所以切線方程為,即.14.已知為等差數(shù)列,為其前項和,若,,則_______【答案】14【解析】【分析】設(shè)公差為,根據(jù)求出公差,即可求出其前項和公式,代入求解即可。【詳解】解:設(shè)公差為,則,把代入得,∴,故故答案為:【點睛】本題考查等差數(shù)列通項公式以及前項和公式,屬于基礎(chǔ)題.15.函數(shù)在處取得最大值,則______【答案】【解析】【分析】利用輔助角公式、兩角差的正弦公式化簡解析式:,并求出和,由條件和正弦函數(shù)的最值列出方程,求出的表達式,由誘導(dǎo)公式求出的值.【詳解】解:,其中,依題意可得,即,所以故答案為:【點睛】本題主要考查輔助角公式、誘導(dǎo)公式,以及正弦函數(shù)的最大值的應(yīng)用,考查化簡、變形能力.16.已知圓和點,若定點和常數(shù)滿足,對圓上任意一點,都有,則_____.【答案】【解析】【分析】設(shè),則,則對任意都成立,由此能求出、.【詳解】解:圓和點,定點,和常數(shù)滿足:對圓上任意一點,都有,設(shè),則,對任意都成立,,由,得,且,解得,.故答案為:【點睛】本題考查實數(shù)值的求法,考查圓、兩點間距離公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.三、解答題:第題為必做題,每題滿分各為分,第題為選做題,只能選做一題,滿分分,解答應(yīng)寫出文字說明,證明過程或演算步驟。17.設(shè)的內(nèi)角的對邊分別為,且.(1)求邊長的值;(2)若的面積,求的周長.【答案】(1)5(2)【解析】【分析】(1)由圖及已知作垂直于,在直角三角形中求的長.(2)由面積公式解出邊長,再由余弦定理解出邊長,求三邊的和即周長.【詳解】解:解:(1)過作于,則由,在中,(2)由面積公式得得,又,得,由余弦定理得:,的周長.【點睛】本題主要考查了射影定理及余弦定理,考查運算能力,屬于中檔題.18。如圖,直三棱柱中,分別是的中點,。(1)證明:平面;(2)求二面角的余弦值。【答案】(1)證明見解析(2)【解析】【分析】(1)連接交于點,由三角形中位線定理得,由此能證明平面.(2)以為坐標(biāo)原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.詳解】證明:證明:連接交于點,則為的中點.又是的中點,連接,則.因為平面,平面,所以平面.(2)由,可得:,即所以又因為直棱柱,所以以點為坐標(biāo)原點,分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個法向量為,同理可得平面的一個法向量為,則所以二面角的余弦值為.【點睛】本題主要考查直線與平面平行、二面角的概念、求法等知識,考查空間想象能力和邏輯推理能力,屬于中檔題.19.已知函數(shù)(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)談?wù)摵瘮?shù)的零點個數(shù)【答案】(1)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是(2)見解析【解析】【分析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)不等式,求出函數(shù)的單調(diào)區(qū)間;(2)由(1)知當(dāng)時,,分,,三種情況討論,由函數(shù)的定義域為顯然沒有零點,當(dāng)轉(zhuǎn)化為函數(shù)的交點問題.【詳解】解:(1)∵,故,∵∴時,,故單調(diào)遞減,時,,故單調(diào)遞增,所以,時,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是(2)由(1)知,當(dāng)時,在處取最小值,當(dāng)時,,在其定義域內(nèi)無零點當(dāng)時,,在其定義域內(nèi)恰有一個零點當(dāng)時,最小值,因為,且在單調(diào)遞減,故函數(shù)在上有一個零點,因,,,又在上單調(diào)遞增,故函數(shù)在上有一個零點,故在其定義域內(nèi)有兩個零點;當(dāng)時,在定義域內(nèi)無零點;當(dāng)時,令,可得,分別畫出與,易得它們的圖象有唯一交點,即此時在其定義域內(nèi)恰有一個零點綜上,時,在其定義域內(nèi)無零點;或時,在其定義域內(nèi)恰有一個零點;時,在其定義域內(nèi)有兩個零點;【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的零點問題,屬于中檔題.20.已知橢圓的焦距為4,且過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓上一點,過點作軸的垂線,垂足為,取點,連接,過點作的垂線交軸于點,點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由。【答案】(1)(2)直線與橢圓一定有唯一公共點,見解析【解析】【分析】(1)根據(jù)題意得到關(guān)于、的方程組,解得.(2)由題意,點坐標(biāo)為,設(shè),由知,求出,根據(jù)對稱表示出點坐標(biāo),即可表示出直線的方程,聯(lián)立直線與橢圓方程消元可得?!驹斀狻拷猓海?)因為焦距為4,所以,又因為橢圓過點,所以,故,,從而橢圓的方程為已知橢圓的焦距為4,且過點。(2)由題意,點坐標(biāo)為,設(shè),則,,再由知,,即.由于,故,因為點是點關(guān)于軸的對稱點,所以點。故直線的斜率.又因在橢圓上,所以.①從而,故直線的方程為②將②代入橢圓方程,得③再將①代入③,化簡得:解得,,即直線與橢圓一定有唯一的公共點.【點睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用問題,屬于中檔題。21.心理學(xué)研究表明,人極易受情緒的影響,某選手參加7局4勝制的兵乒球比賽。(1)在不受情緒的影響下,該選手每局獲勝的概率為;但實際上,如果前一句獲勝的話,此選手該局獲勝的概率可提升到;而如果前一局失利的話,此選手該局獲勝的概率則降為,求該選手在前3局獲勝局?jǐn)?shù)的分布列及數(shù)學(xué)期望;(2)假設(shè)選手的三局比賽結(jié)果互不影響,且三局比賽獲勝的概率為,記為銳角的內(nèi)角,求證:【答案】(1)分布列見解析,數(shù)學(xué)期望1(2)證明見解析【解析】【分析】(1)依題意前3局獲勝局?jǐn)?shù)可取,分別計算概率,列出分布列,即可求出期望。(2)根據(jù)相互獨立事件的概率計算公式可得選手至少勝一局的概率為:且概率要小于,即可得證?!驹斀狻拷猓海?)依題意,可知可?。骸唷嚯S機變量的分布列為:0123∴.(2)∵是銳角三角形,∴,則三局比賽中,該選手至少勝一局的概率為:由概率的定義可知:,故有:【點睛】本題考查離散型隨機變量的分布列以及相互獨立事件的概率計算問題,屬于中檔題.選做題:請考生在下面兩題中任選一題作答.選修4—4:極坐標(biāo)與參數(shù)方程22。已知動點P,Q都在曲線上,且對應(yīng)參數(shù)值分別為與(),點M為PQ的中點.(1)求點的軌跡的參數(shù)方程(用作參數(shù));(2)將點到坐標(biāo)原點的距離表示為的函數(shù),并判斷點的軌跡是否過坐標(biāo)原點。【答案】(1)();(2)見解析?!窘馕觥俊痉治觥?1)分別求出,再利用中點坐標(biāo)公式即可求解。(2)利用兩點間的距離公式求出,再利用兩角和的余弦公式化簡可得,從而可判斷.【詳解】(1)由題意有因此,的軌跡的參數(shù)方程為()(2)點到坐標(biāo)原點的距離:()當(dāng)時,,故的軌跡過坐標(biāo)原點?!军c睛】本題考查了參數(shù)方程、兩點間的距離公式以及兩角和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冰雪合同范本
- 減除合同范本
- pos機押金退還合同范本
- 2025年度房地產(chǎn)融資結(jié)算借款合同范本
- 二手車市場投資合同范本
- 2025年度公共自行車租賃與共享服務(wù)安全保障合同
- 出售經(jīng)紀(jì)服務(wù)合同范本
- 農(nóng)村房子用地改建合同范例
- 俄語供貨合同范例
- 加工紙訂購合同范本
- 第4課+中古時期的亞洲(教學(xué)設(shè)計)-【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 保障性住房建設(shè)資金來源與運作機制
- 金點子活動總結(jié)匯報
- 原料驗收標(biāo)準(zhǔn)知識培訓(xùn)課件
- 江蘇春節(jié)風(fēng)俗 南京夫子廟、鹽水鴨與昆曲
- Unit4MyfamilyStorytime(課件)人教新起點英語三年級下冊
- 物流運作管理-需求預(yù)測
- 《電機與電氣控制(第三版)習(xí)題冊》 習(xí)題答案
- 鋼桁梁頂推施工方案
- 醫(yī)療器械采購方案投標(biāo)方案(完整技術(shù)標(biāo))
- 交通運輸安全工作調(diào)研報告
評論
0/150
提交評論