版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑,∠BAC=28o,則∠P的度數(shù)是()A.50o B.58oC.56o D.55o2.如圖,在中..是的角平分線.若在邊上截取,連接,則圖中等腰三角形共有()A.3個 B.5個 C.6個 D.2個3.如圖,已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,則等于()A.3 B.4 C.5 D.64.關(guān)于x的一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.不確定5.某次數(shù)學(xué)糾錯比賽共有道題目,每道題都答對得分,答錯或不答得分,全班名同學(xué)參加了此次競賽,他們的得分情況如下表所示:成績(分)人數(shù)則全班名同學(xué)的成績的中位數(shù)和眾數(shù)分別是()A., B., C.,70 D.,6.如圖是由4個大小相同的立方塊搭成的幾何體,這個幾何體的主視圖是()A. B. C. D.7.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根8.計算的值為()A.1 B.C. D.9.將拋物線向上平移兩個單位長度,得到的拋物線解析式是()A. B.C. D.10.如圖是以△ABC的邊AB為直徑的半圓O,點C恰好在半圓上,過C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,則AC的長為()A.1 B. C.3 D.二、填空題(每小題3分,共24分)11.在一個不透明的袋子中裝有3個白球和若干個紅球,這些球除顏色外都相同.每次從袋子中隨機摸出一個球,記下顏色后再放回袋中,通過多次重復(fù)試驗發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.7附近,則袋子中紅球約有___個.12.將拋物線y=x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是__.13.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=.14.如果,那么銳角_________°.15.已知,⊙O的半徑為6,若它的內(nèi)接正n邊形的邊長為6,則n=_____.16.計算:2sin30°+tan45°=_____.17.如圖,在邊長為的等邊三角形ABC中,以點A為圓心的圓與邊BC相切,與邊AB、AC相交于點D、E,則圖中陰影部分的面積為_______.18.某種傳染病,若有一人感染,經(jīng)過兩輪傳染后將共有49人感染.設(shè)這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.三、解答題(共66分)19.(10分)已知二次函數(shù)的頂點坐標為,且其圖象經(jīng)過點,求此二次函數(shù)的解析式.20.(6分)如圖,在中,,是斜邊上的中線,以為直徑的分別交、于點、,過點作,垂足為.(1)若的半徑為,,求的長;(2)求證:與相切.21.(6分)菜農(nóng)李偉種植的某蔬菜計劃以每千克5元的單價對外批發(fā)銷售,由于部分菜農(nóng)盲目擴大種植,造成該蔬菜滯銷.李偉為了加快銷售,減少損失,對價格經(jīng)過兩次下調(diào)后,以每千克3.2元的單價對外批發(fā)銷售.(1)求平均每次下調(diào)的百分率;(2)小華準備到李偉處購買5噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:方案一:打九折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金200元.試問小華選擇哪種方案更優(yōu)惠,請說明理由.22.(8分)如圖1,拋物線與軸交于,兩點,與軸交于點,已知點,且對稱軸為直線.(1)求該拋物線的解析式;(2)點是第四象限內(nèi)拋物線上的一點,當?shù)拿娣e最大時,求點的坐標;(3)如圖2,點是拋物線上的一個動點,過點作軸,垂足為.當時,直接寫出點的坐標.23.(8分)某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機抽取本校40名學(xué)生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:(1)課外體育鍛煉情況統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為;“經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項目”中,喜歡足球的人數(shù)有人,補全條形統(tǒng)計圖.(2)該校共有1200名學(xué)生,請估計全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.24.(8分)如圖,在平面直角坐標系xOy中,函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣1,6).(1)求k的值;(2)已知點P(a,﹣2a)(a<0),過點P作平行于x軸的直線,交直線y=﹣2x﹣2于點M,交函數(shù)y=(x<0)的圖象于點N.①當a=﹣1時,求線段PM和PN的長;②若PN≥2PM,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.25.(10分)一個不透明的箱子里放有2個白球,1個黑球和1個紅球,它們除顏色外其余都相同.箱子里摸出1個球后不放回,搖勻后再摸出1個球,求兩次摸到的球都是白球的概率。(請用列表或畫樹狀圖等方法)26.(10分)一個不透明的口袋中有三個小球,上面分別標注數(shù)字1,2,3,每個小球除所標注數(shù)字不同外,其余均相同.小勇先從口袋中隨機摸出一個小球,記下數(shù)字后放回并攪勻,再次從口袋中隨機摸出一個小球.用畫樹狀圖(或列表)的方法,求小勇兩次摸出的小球所標數(shù)字之和為3的概率.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用切線長定理可得切線的性質(zhì)的PA=PB,,則,,再利用互余計算出,然后在根據(jù)三角形內(nèi)角和計算出的度數(shù).【詳解】解:∵PA,PB是⊙O的切線,A,B為切點,∴PA=PB,,∴在△ABP中∴故選:C.【點睛】本題主要考查了切線長定理以及切線的性質(zhì),熟練掌握切線長定理以及切線性質(zhì)是解題的關(guān)鍵.2、B【分析】根據(jù)等腰三角形的判定及性質(zhì)和三角形的內(nèi)角和定理求出各角的度數(shù),逐一判斷即可.【詳解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC為等腰三角形∵是的角平分線∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC為等腰三角形∴BC=BD,△BCD為等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC為等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA為等腰三角形共有5個等腰三角形故選B.【點睛】此題考查的是等腰三角形的判定及性質(zhì)和三角形的內(nèi)角和,掌握等邊對等角、等角對等邊和三角形的內(nèi)角和定理是解決此題的關(guān)鍵.3、D【分析】根據(jù)點平移規(guī)律,得到點A平移后的點的坐標為(2,3),由此計算k值.【詳解】∵已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,∴點A平移后的點坐標為(2,3),∵點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,∴,故選:D.【點睛】此題考查點平移的規(guī)律,點沿著x軸左右平移的規(guī)律是:左減右加;點沿著y軸上下平移的規(guī)律是:上加下減,熟記規(guī)律是解題的關(guān)鍵.4、A【分析】將方程化簡,再根據(jù)判斷方程的根的情況.【詳解】解:原方程可化為,所以原方程有兩個不相等的實數(shù)根.故選:A【點睛】本題考查了一元二次方程根的情況,靈活利用的正負進行判斷是解題的關(guān)鍵.當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個不相等的實數(shù)根;當時,方程沒有實數(shù)根.5、A【分析】根據(jù)中位數(shù)的定義把這組數(shù)據(jù)從小到大排列,求出最中間2個數(shù)的平均數(shù);根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù)即可.【詳解】把這組數(shù)據(jù)從小到大排列,最中間2個數(shù)的平均數(shù)是(70+80)÷2=75;
則中位數(shù)是75;
70出現(xiàn)了13次,出現(xiàn)的次數(shù)最多,則眾數(shù)是70;
故選:A.【點睛】本題考查了眾數(shù)和中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意眾數(shù)不止一個.6、A【分析】主視圖:從物體正面觀察所得到的圖形,由此觀察即可得出答案.【詳解】從物體正面觀察可得,左邊第一列有2個小正方體,第二列有1個小正方體.故答案為A.【點睛】本題考查三視圖的知識,主視圖是從物體的正面看得到的視圖.7、A【分析】根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.8、B【解析】逆用同底數(shù)冪的乘法和積的乘方將式子變形,再運用平方差公式計算即可.【詳解】解:故選B.【點睛】本題考查二次根式的運算,高次冪因式相乘往往是先設(shè)法將底數(shù)化為積為1或0的形式,然后再靈活選用冪的運算法則進行化簡求值.9、D【分析】按“左加右減括號內(nèi),上加下減括號外”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】由題意得=.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k
(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負左移;k值正上移,負下移”.10、D【解析】∵AB是直徑,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故選D.二、填空題(每小題3分,共24分)11、1.【分析】根據(jù)口袋中有3個白球和若干個紅球,利用紅球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】設(shè)袋中紅球有x個,根據(jù)題意,得:,解得:x=1,經(jīng)檢驗:x=1是分式方程的解,所以袋中紅球有1個,故答案為1.【點睛】此題考查利用頻率估計概率,解題關(guān)鍵在于利用紅球在總數(shù)中所占比例進行求解.12、y=(x+2)2-1【分析】根據(jù)左加右減,上加下減的變化規(guī)律運算即可.【詳解】解:按照“左加右減,上加下減”的規(guī)律,向左平移2個單位,將拋物線y=x2先變?yōu)閥=(x+2)2,再沿y軸方向向下平移1個單位拋物線y=(x+2)2即變?yōu)椋簓=(x+2)2?1,故答案為:y=(x+2)2?1.【點睛】本題考查了拋物線的平移,掌握平移規(guī)律是解題關(guān)鍵.13、.【解析】試題分析:根據(jù)矩形的性質(zhì)得∠B=∠D=∠BAD=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′=∠D=90°,∠4=α,利用對頂角相等得到∠1=∠2=110°,再根據(jù)四邊形的內(nèi)角和為360°可計算出∠3=70°,然后利用互余即可得到∠α的度數(shù).解:如圖,∵四邊形ABCD為矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案為20°.14、30【分析】根據(jù)特殊角的三角函數(shù)值即可得出答案.【詳解】∵∴故答案為30【點睛】本題主要考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.15、1【分析】根據(jù)題意作出圖形,得到Rt△ADO,利用三角函數(shù)值計算出sin∠AOD=,得出∠AOD=15°,通過圓周角360°計算即可得出結(jié)果.【詳解】解:如圖所示:連接AO,BO,過點O做OD⊥AB,∵⊙O的半徑為6,它的內(nèi)接正n邊形的邊長為6,∴AD=BD=3,∴sin∠AOD==,∴∠AOD=15°,∴∠AOB=90°,∴n==1.故答案為:1.【點睛】本題考查了圓內(nèi)接正多邊形的性質(zhì),垂徑定理的應(yīng)用,三角函數(shù)值的應(yīng)用,掌握圓的性質(zhì)內(nèi)容是解題的關(guān)鍵.16、1.【分析】根據(jù)解特殊角的三角函數(shù)值即可解答.【詳解】原式=1×+1=1.【點睛】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是牢記這些特殊三角函數(shù)值.17、【分析】首先求得圓的半徑,根據(jù)陰影部分的面積=△ABC的面積?扇形ADE的面積即可求解.【詳解】解:設(shè)以點A為圓心的圓與邊BC相切于點F,連接AF,如圖所示:
則AF⊥BC,
∵△ABC是等邊三角形,
∴∠B=60°,BC=AB=,
∴AF=AB?sin60°=×=3,
∴陰影部分的面積=△ABC的面積?扇形ADE的面積=××3?=.
故答案為:.【點睛】本題主要考查了扇形的面積的計算、三角函數(shù)、切線的性質(zhì)、等邊三角形的性質(zhì);熟練掌握切線的性質(zhì),由三角函數(shù)求出AF是解決問題的關(guān)鍵.18、x(x+1)+x+1=1.【分析】設(shè)每輪傳染中平均一人傳染x人,那么經(jīng)過第一輪傳染后有x人被感染,那么經(jīng)過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設(shè)每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關(guān)鍵.三、解答題(共66分)19、【分析】根據(jù)已知頂點坐標,利用待定系數(shù)法可設(shè)二次函數(shù)的解析式為,代入坐標求解即可求得二次函數(shù)的解析式.【詳解】解:因為二次函數(shù)的頂點坐標為,所以可設(shè)二次函數(shù)的解析式為:因為圖象經(jīng)過點(1,1),所以,解得,所以,所求二次函數(shù)的解析式為:.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式,一般設(shè)解析式為;當已知二次函數(shù)的頂點坐標時,可設(shè)解析式為;當已知二次函數(shù)圖象與x軸的兩個交點坐標時,可設(shè)解析式為.20、(1);(2)見解析.【分析】(1)根據(jù)直角三角形斜邊的中線等于斜邊的一半,可求得的長度,再根據(jù)勾股定理,可求得的長度.根據(jù)圓的直徑對應(yīng)的圓周角為直角,可知,根據(jù)等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,可求得的長.(2)根據(jù)三角形中位線平行于底邊,可知,再根據(jù),可知,則可知與相切.【詳解】(1)連接、,,.為的斜邊的中線,由于直角三角形斜邊的中線等于斜邊的一半,,,,為圓的直徑.,即,由于等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,.(2)、為、的中點,由于三角形中位線平行于底邊,,.,,即.又為半徑與圓相切.【點睛】本題綜合考查“直角三角形斜邊中線等于斜邊的一半”,“等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合”,“三角形中位線平行于底邊”等定律,以及圓的切線的判定定理.21、(1)10%.(1)小華選擇方案一購買更優(yōu)惠.【解析】試題分析:(1)設(shè)出平均每次下調(diào)的百分率,根據(jù)從5元下調(diào)到3.1列出一元二次方程求解即可;(1)根據(jù)優(yōu)惠方案分別求得兩種方案的費用后比較即可得到結(jié)果.試題解析:(1)設(shè)平均每次下調(diào)的百分率為x.由題意,得5(1﹣x)1=3.1.解這個方程,得x1=0.1,x1=1.8(不符合題意),符合題目要求的是x1=0.1=10%.答:平均每次下調(diào)的百分率是10%.(1)小華選擇方案一購買更優(yōu)惠.理由:方案一所需費用為:3.1×0.9×5000=14400(元),方案二所需費用為:3.1×5000﹣100×5=15000(元).∵14400<15000,∴小華選擇方案一購買更優(yōu)惠.【考點】一元二次方程的應(yīng)用.22、(1);(2)(3)或或或【分析】(1)由對稱性可知拋物線與軸的另一個交點為,將點,坐標代入,聯(lián)立方程組求解即可得到,即可得到拋物線的解析式.(2)作軸交直線于點,設(shè)直線BC:y=kx+b,代入B、C兩點坐標求得直線為,設(shè)點為,則點為,,表示出S,化簡整理可得,根據(jù)二次函數(shù)的性質(zhì)得當時,的面積最大,此時點坐標為(3)根據(jù)A、B坐標易得AB=4,當PQ=3時滿足條件,P點的縱坐標為±3,代入函數(shù)解析式求得P點的橫坐標,即可得到P點的坐標.【詳解】解:(1)由對稱性可知拋物線與軸的另一個交點為把點,坐標代入,,解得拋物線的解析式為.(2)如圖1,作軸交直線于點設(shè)直線BC:y=kx+b,代入B(3,0),C(0,-3)可得解得:∴直線為設(shè)點為則點為當時,的面積最大,代入,可得=,此時點坐標為(3)∵A(-1,0),B(3,0)∴AB=4∵∴PQ=3,即P點縱坐標為±3,當y=3時,解得:當y=-3時,解得:x1=0,x2=2,綜上,當時,或或或.【點睛】本題為二次函數(shù)的綜合,涉及知識點有待定系數(shù)法、二次函數(shù)的最值及分類討論思想.23、(1)144°,1;(2)180;(3).【解析】試題分析:(1)用“經(jīng)常參加”所占的百分比乘以360°計算得到“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù);先求出“經(jīng)常參加”的人數(shù),然后減去其它各組人數(shù)得出喜歡足球的人數(shù);進而補全條形圖;(2)用總?cè)藬?shù)乘以喜歡籃球的學(xué)生所占的百分比計算即可得解;(3)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),找出選中的兩個項目恰好是“乒乓球”、“籃球”所占結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“經(jīng)常參加”的人數(shù)為:40×40%=16人,喜歡足的學(xué)生人數(shù)為:16﹣6﹣4﹣3﹣2=1人;補全統(tǒng)計圖如圖所示:故答案為:144°,1;(2)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)約為:1200×=180人;(3)設(shè)A代表“乒乓球”、B代表“籃球”、C代表“足球”、D代表“羽毛球”,畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中選中的兩個項目恰好是“乒乓球”、“籃球”的情況占2種,所以選中“乒乓球”、“籃球”這兩個項目的概率是=.點睛:本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了樣本估計總體、扇形統(tǒng)計圖和條形統(tǒng)計圖.24、(1)k=-3;(3)①PM=1,PN=3;②a≤﹣3或﹣1≤a<1.【分析】(1)把點A(﹣1,3)代入
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課程設(shè)計如何校核洪水
- 2025年度智慧農(nóng)業(yè)測繪技術(shù)服務(wù)合同模板3篇
- 2025年度地質(zhì)勘探測量員招聘合同范本3篇
- 2025年生態(tài)住宅區(qū)物業(yè)承包與生態(tài)保護合同3篇
- 2025版環(huán)保型淋浴房材料供應(yīng)與安裝服務(wù)合同范本4篇
- 二零二五版飯店職工勞動合同及社會保險補充協(xié)議3篇
- 二零二五年度汽車行業(yè)人才招聘與培訓(xùn)電子合同3篇
- 2025年度倉儲物流場地隱秘操作監(jiān)管合同4篇
- 二零二五年度碼頭工程設(shè)計與施工總承包合同4篇
- 2025年度煤炭行業(yè)人力資源培訓(xùn)合同4篇
- 餐飲行業(yè)智慧餐廳管理系統(tǒng)方案
- 2025年度生物醫(yī)藥技術(shù)研發(fā)與許可協(xié)議3篇
- 電廠檢修安全培訓(xùn)課件
- 殯葬改革課件
- 2024企業(yè)答謝晚宴會務(wù)合同3篇
- 雙方個人協(xié)議書模板
- 新外研版九年級上冊(初三)英語全冊教學(xué)課件PPT
- 初中中考英語總復(fù)習(xí)《代詞動詞連詞數(shù)詞》思維導(dǎo)圖
- 植物和五行關(guān)系解說
- 滬教牛津版初中英語七年級下冊全套單元測試題
- 因式分解法提公因式法公式法
評論
0/150
提交評論