2023屆陜西省西安市碑林區(qū)鐵一中學九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
2023屆陜西省西安市碑林區(qū)鐵一中學九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
2023屆陜西省西安市碑林區(qū)鐵一中學九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
2023屆陜西省西安市碑林區(qū)鐵一中學九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
2023屆陜西省西安市碑林區(qū)鐵一中學九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列事件屬于必然事件的是()A.在一個裝著白球和黑球的袋中摸球,摸出紅球B.拋擲一枚硬幣2次都是正面朝上C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,是次品2.若反比例函數(shù)的圖象過點A(5,3),則下面各點也在該反比例函數(shù)圖象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)3.已知二次函數(shù)y=﹣x2﹣bx+1(﹣5<b<2),則函數(shù)圖象隨著b的逐漸增大而()A.先往右上方移動,再往右平移B.先往左下方移動,再往左平移C.先往右上方移動,再往右下方移動D.先往左下方移動,再往左上方移動4.如圖,在△ABC中,點D、E分別在邊BA、CA的延長線上,=2,那么下列條件中能判斷DE∥BC的是()A. B. C. D.5.如圖,在△ABC中,AB=6,AC=8,BC=9,將△ABC沿圖中的線段剪開,剪下的陰影三角形與原三角形不相似的是()A. B.C. D.6.方程的解的個數(shù)為()A.0 B.1 C.2 D.1或27.拋物線的頂點坐標為()A.(3,1) B.(,1) C.(1,3) D.(1,)8.如圖,AB∥CD,E,F(xiàn)分別為AC,BD的中點,若AB=5,CD=3,則EF的長是()A.4 B.3 C.2 D.19.函數(shù)y=-x2-3的圖象頂點是()A. B. C. D.10.下列方程中,為一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..二、填空題(每小題3分,共24分)11.若一個圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,則該圓錐的側(cè)面積是____________.12.如圖,已知反比例函數(shù)的圖象經(jīng)過斜邊的中點,與直角邊相交于點.若的面積為8,則的值為________.13.如果不等式組的解集是x<a﹣4,則a的取值范圍是_______.14.已知關于x的一元二次方程ax2+bx+5a=0有兩個正的相等的實數(shù)根,則這兩個相等實數(shù)根的和為_____.15.若某人沿坡度i=3∶4的斜坡前進10m,則他比原來的位置升高了_________m.16.二次函數(shù)(a,b,c為常數(shù)且a≠0)中的與的部分對應值如下表:013353現(xiàn)給出如下四個結(jié)論:①;②當時,的值隨值的增大而減?。虎凼欠匠痰囊粋€根;④當時,,其中正確結(jié)論的序號為:____.

17.拋物線y=(x-1)2-7的對稱軸為直線_________.18.計算:_____.三、解答題(共66分)19.(10分)在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=ax2+bx+8過點(﹣2,0).(1)求拋物線的表達式,并寫出其頂點坐標;(2)現(xiàn)將此拋物線沿y軸方向平移若干個單位,所得拋物線的頂點為D,與y軸的交點為B,與x軸負半軸交于點A,過B作x軸的平行線交所得拋物線于點C,若AC∥BD,試求平移后所得拋物線的表達式.20.(6分)如圖,在?ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.(1)如圖1,當PB=3時,求PA的長以及⊙O的半徑;(2)如圖2,當∠APB=2∠PBE時,求證:AE平分∠PAD;(3)當AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.21.(6分)如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東53°方向,距離B地516千米,C地位于A地南偏東45°方向.現(xiàn)打算打通穿山隧道,建成兩地直達高鐵,求建成高鐵后從B地前往C地的路程.(結(jié)果精確到1千米)(參考數(shù)據(jù):sin53°=,cos53°=,tan53°=)22.(8分)有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū),分別標有數(shù)字1,2,3,另有一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4(如圖所示),小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一個人轉(zhuǎn)動圓盤,另一人從口袋中摸出一個小球,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.(1)用畫樹狀圖或列表的方法求出小穎參加比賽的概率;(2)你認為該游戲公平嗎?請說明理由.23.(8分)將兩張半徑均為10的半圓形的紙片完全重合疊放一起,上面這張紙片繞著直徑的一端B順時針旋轉(zhuǎn)30°后得到如圖所示的圖形,與直徑AB交于點C,連接點與圓心O′.(1)求的長;(2)求圖中下面這張半圓形紙片未被上面這張紙片重疊部分的面積.24.(8分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結(jié)果精確到0.1m)25.(10分)用合適的方法解方程:(1);(2).26.(10分)關于x的一元二次方程有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)當m為最大的整數(shù)時,解這個一元二次方程.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,據(jù)此逐一判斷即可.【詳解】A.在一個裝著白球和黑球的袋中摸球,摸出紅球,一定不會發(fā)生,是不可能事件,不符合題意,B.拋擲一枚硬幣2次都是正面朝上,可能朝上,也可能朝下,是隨機事件,不符合題意,C.在標準大氣壓下,氣溫為15℃時,冰能熔化為水,是必然事件,符合題意.D.從車間剛生產(chǎn)的產(chǎn)品中任意抽一個,可能是正品,也可能是次品,是隨機事件,不符合題意,故選:C.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、D【解析】先利用待定系數(shù)法求出反比例函數(shù)的解析式,然后將各選項的點代入驗證即可.【詳解】將點代入得:,解得則反比例函數(shù)為:A、令,代入得,此項不符題意B、令,代入得,此項不符題意C、令,代入得,此項不符題意D、令,代入得,此項符合題意故選:D.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式、以及確定某點是否在函數(shù)上,依據(jù)題意求出反比例函數(shù)解析式是解題關鍵.3、D【分析】先分別求出當b=﹣5、0、2時函數(shù)圖象的頂點坐標即可得結(jié)論.【詳解】解:二次函數(shù)y=﹣x2﹣bx+1(﹣5<b<2),當b=﹣5時,y=﹣x2+5x+1=﹣(x﹣)2+,頂點坐標為(,);當b=0時,y=﹣x2+1,頂點坐標為(0,1);當b=2時,y=﹣x2﹣2x+1=﹣(x+1)2+2,頂點坐標為(﹣1,2).故函數(shù)圖象隨著b的逐漸增大而先往左下方移動,再往左上方移動.故選:D.【點睛】本題主要考查了二次函數(shù)圖象,掌握二次函數(shù)的性質(zhì)是解決本題的關鍵.4、D【分析】只要證明,即可解決問題.【詳解】解:A.,可得AE:AC=1:1,與已知不成比例,故不能判定B.,可得AC:AE=1:1,與已知不成比例,故不能判定;C選項與已知的,可得兩組邊對應成比例,但夾角不知是否相等,因此不一定能判定;D.,可得DE//BC,故選D.【點睛】本題考查平行線的判定,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.5、B【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【詳解】A、根據(jù)兩邊成比例,夾角相等,故兩三角形相似,故本選項錯誤;B、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確;C、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.D、根據(jù)兩邊成比例,夾角相等,故兩三角形相似,故本選項錯誤;故選:B.【點睛】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.6、C【解析】根據(jù)一元二次方程根的判別式,求出△的值再進行判斷即可.【詳解】解:∵x2=0,

∴△=02-4×1×0=0,∴方程x2=0有兩個相等的實數(shù)根.故選C【點睛】本題考查的是一元二次方程根的判別式,當△>0時方程有兩個不相等的實數(shù)根,△=0時方程有兩個相等的實數(shù)根,△<0時方程沒有實數(shù)根.7、A【分析】利用二次函數(shù)的頂點式是:y=a(x?h)2+k(a≠0,且a,h,k是常數(shù)),頂點坐標是(h,k)進行解答.【詳解】∵,∴拋物線的頂點坐標是(3,1).故選:A.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=a(x?h)2+k的頂點坐標為(h,k),對稱軸為x=h.熟知二次函數(shù)的頂點坐標式是解答本題的關鍵8、D【詳解】連接DE并延長交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中點,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中點,∴EF是△DHB的中位線.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故選D.9、C【解析】函數(shù)y=-x2-3的圖象頂點坐標是(0,-3).故選C.10、B【解析】試題解析:A.是一元一次方程,故A錯誤;

B.是一元二次方程,故B正確;

C.不是整式方程,故C錯誤;

D.不是一元二次方程,故D錯誤;

故選B.二、填空題(每小題3分,共24分)11、15π.【分析】根據(jù)圓錐的主視圖得到圓錐的底面圓的半徑為3,母線長為5,然后根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式求解.【詳解】解:根據(jù)題意得圓錐的底面圓的半徑為3,母線長為5,所以這個圓錐的側(cè)面積=×5×2π×3=15π.【點睛】本題考查圓錐側(cè)面積的計算,掌握公式,準確計算是本題的解題關鍵.12、【分析】過D點作x軸的垂線交x軸于E點,可得到四邊形DBAE和三角形OBC的面積相等,通過面積轉(zhuǎn)化,可求出k的值.【詳解】解:過D點作x軸的垂線交x軸于E點,∵△ODE的面積和△OAC的面積相等.的面積與四邊形的面積相等,∴四邊形DEAB=8,設D點的橫坐標為x,縱坐標就為∵D為OB的中點.∴∴四邊形DEAB的面積可表示為:∴故答案為:【點睛】本題考查反比例函數(shù)的綜合運用,關鍵是知道反比例函數(shù)圖象上的點和坐標軸構成的三角形面積的特點以及根據(jù)面積轉(zhuǎn)化求出k的值.13、a≥﹣3.【分析】根據(jù)口訣“同小取小”可知不等式組的解集,解這個不等式即可.【詳解】解這個不等式組為x<a﹣4,則3a+2≥a﹣4,解這個不等式得a≥﹣3故答案a≥﹣3.【點睛】此題考查解一元一次不等式組,掌握運算法則是解題關鍵14、2【分析】根據(jù)根的判別式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根據(jù)韋達定理:即可.【詳解】當關于x的一元二次方程ax2+bx+5a=0有兩個正的相等的實數(shù)根時,,即,解得b=﹣2a或b=2a(舍去),原方程可化為ax2﹣2ax+5a=0,則這兩個相等實數(shù)根的和為.故答案為:2.【點睛】本題考查一元二次方程根的判別式和韋達定理,解題的關鍵是熟練掌握根的判別式和韋達定理。15、1.【詳解】解:如圖:由題意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案為:1【點睛】本題考查解直角三角形的應用-坡度坡角問題.16、①②③④【分析】先利用待定系數(shù)法求得的值,<0可判斷①;對稱軸為直線,利用二次函數(shù)的性質(zhì)可判斷②;方程即,解得,可判斷③;時,;當時,,且函數(shù)有最大值,則當時,,即可判斷④.【詳解】∵時,時,時,∴,解得:,∴,故①正確;

∵對稱軸為直線,∴當x>時,y的值隨x值的增大而減小,故②正確;方程即,解得,∴是方程的一個根,故③正確;當時,,

當時,,∵,∴函數(shù)有最大值,

∴當時,,故④正確.

故答案為:①②③④.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的性質(zhì),拋物線與x軸的交點,熟練掌握二次函數(shù)圖象的性質(zhì)是解題的關鍵.17、x=1【分析】根據(jù)拋物線y=a(x-h)2+k的對稱軸是x=h即可確定所以拋物線y=(x-1)2-7的對稱軸.【詳解】解:∵y=(x-1)2-7

∴對稱軸是x=1

故填空答案:x=1.【點睛】本題主要考查了二次函數(shù)的性質(zhì),熟記二次函數(shù)的對稱軸,頂點坐標是解答此題的關鍵.18、3【解析】根據(jù)二次根式的乘法法則和零指數(shù)冪的意義運算【詳解】原式=+1=2+1=3.【點睛】本題考查了二次根式的混合計算:先把各二次根式化為最簡二次根式,再進行二次根式的乘除運算.三、解答題(共66分)19、(1)y=﹣x2+2x+8,其頂點為(1,9)(2)y=﹣x2+2x+3【分析】(1)根據(jù)對稱軸為直線x=1的拋物線y=ax2+bx+8過點(﹣2,0),可得,解得即可求解,(2)設令平移后拋物線為,可得D(1,k),B(0,k-1),且,根據(jù)BC平行于x軸,可得點C與點B關于對稱軸x=1對稱,可得C(2,k-1),根據(jù),解得,即.作DH⊥BC于H,CT⊥x軸于T,則在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,即可求平移后的二次函數(shù)解析式.【詳解】(1)由題意得:,解得:,所以拋物線的表達式為,其頂點為(1,9).(2)令平移后拋物線為,易得D(1,k),B(0,k-1),且,由BC平行于x軸,知點C與點B關于對稱軸x=1對稱,得C(2,k-1),由,解得(舍正),即.作DH⊥BC于H,CT⊥x軸于T,則在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,所以平移后拋物線表達式為.20、(1)PA的長為,⊙O的半徑為;(2)見解析;(3)⊙O的半徑為2或或【分析】(1)過點A作BP的垂線,作直徑AM,先在Rt△ABH中求出BH,AH的長,再在Rt△AHP中用勾股定理求出AP的長,在Rt△AMP中通過銳角三角函數(shù)求出直徑AM的長,即求出半徑的值;(2)證∠APB=∠PAD=2∠PAE,即可推出結(jié)論;(3)分三種情況:當AE⊥BD時,AB是⊙O的直徑,可直接求出半徑;當AE⊥AD時,連接OB,OE,延長AE交BC于F,通過證△BFE∽△DAE,求出BE的長,再證△OBE是等邊三角形,即得到半徑的值;當AE⊥AB時,過點D作BC的垂線,通過證△BPE∽△BND,求出PE,AE的長,再利用勾股定理求出直徑BE的長,即可得到半徑的值.【詳解】(1)如圖1,過點A作BP的垂線,垂足為H,作直徑AM,連接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB?sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直徑,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半徑為,即PA的長為,⊙O的半徑為;(2)當∠APB=2∠PBE時,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四邊形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如圖3﹣1,當AE⊥BD時,∠AEB=90°,∴AB是⊙O的直徑,∴r=AB=2;②如圖3﹣2,當AE⊥AD時,連接OB,OE,延長AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB?sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等邊三角形,∴r=;③當AE⊥AB時,∠BAE=90°,∴AE為⊙O的直徑,∴∠BPE=90°,如圖3﹣3,過點D作BC的垂線,交BC的延長線于點N,延開PE交AD于點Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC?sin60°=2,CN=CD=2,∴PQ=DN=2,設QE=x,則PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE與Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半徑為2或或.【點睛】此題主要考查圓與幾何綜合,解題的關鍵是熟知圓的基本性質(zhì)、勾股定理及相似三角形的判定與性質(zhì).21、建成高鐵后從B地前往C地的路程約為722千米.【分析】作AD⊥BC于D,分別根據(jù)正弦、余弦的定義求出BD、AD,再根據(jù)等腰直角三角形的性質(zhì)求出CD的長,最后計算即可.【詳解】解:如圖:作AD⊥BC于D,在Rt△ADB中,cos∠DAB=,sin∠DAB=,∴AD=AB?cos∠DAB=516×=309.6,BD=AB?sin∠DAB=516×=412.8,在Rt△ADC中,∠DAC=45°,∴CD=AD=309.6,∴BC=BD+CD≈722,答:建成高鐵后從B地前往C地的路程約為722千米.【點睛】本題考查了方向角問題,掌握方向角的概念和熟記銳角三角函數(shù)的定義是解答本題的關鍵.22、(1)圖見解析,概率為;(2)不公平,理由見解析【分析】(1)首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩指針所指數(shù)字之和和小于4的情況,則可求得小穎參加

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論