2021-2022學年山東省武城縣聯(lián)考中考數(shù)學五模試卷含解析_第1頁
2021-2022學年山東省武城縣聯(lián)考中考數(shù)學五模試卷含解析_第2頁
2021-2022學年山東省武城縣聯(lián)考中考數(shù)學五模試卷含解析_第3頁
2021-2022學年山東省武城縣聯(lián)考中考數(shù)學五模試卷含解析_第4頁
2021-2022學年山東省武城縣聯(lián)考中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)《關于“十三五”期間全面深入推進教育信息化工作的指導意見》顯示,全國6000萬名師生已通過“網(wǎng)絡學習空間”探索網(wǎng)絡條件下的新型教學、學習與教研模式,教育公共服務平臺基本覆蓋全國學生、教職工等信息基礎數(shù)據(jù)庫,實施全國中小學教師信息技術應用能力提升工程.則數(shù)字6000萬用科學記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1082.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.3.下列命題正確的是()A.內(nèi)錯角相等B.-1是無理數(shù)C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等4.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個5.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.6.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°7.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y38.下列幾何體是棱錐的是()A. B. C. D.9.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)10.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.43二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡:x2-4x+4x12.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.13.已知直線與拋物線交于A,B兩點,則_______.14.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數(shù)經(jīng)過正方形AOBC對角線的交點,半徑為()的圓內(nèi)切于△ABC,則k的值為________.15.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結(jié)果保留π)16.直線AB,BC,CA的位置關系如圖所示,則下列語句:①點A在直線BC上;②直線AB經(jīng)過點C;③直線AB,BC,CA兩兩相交;④點B是直線AB,BC,CA的公共點,正確的有_____(只填寫序號).三、解答題(共8題,共72分)17.(8分)求不等式組的整數(shù)解.18.(8分)如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.19.(8分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉(zhuǎn)交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.20.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.21.(8分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.22.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.23.(12分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.(1)直接寫出關于原點的中心對稱圖形各頂點坐標:________________________;(2)將繞B點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后圖形.求在旋轉(zhuǎn)過程中所掃過的圖形的面積和點經(jīng)過的路徑長.24.在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

將一個數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點睛】此題考查科學記數(shù)法,當所表示的數(shù)的絕對值大于1時,n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當要表示的數(shù)的絕對值小于1時,n為負整數(shù),其值等于原數(shù)中第一個非零數(shù)字前面所有零的個數(shù)的相反數(shù),正確掌握科學記數(shù)法中n的值的確定是解題的關鍵.2、B【解析】

無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【點睛】本題考查了無理數(shù)的定義及概率的計算.3、D【解析】解:A.兩直線平行,內(nèi)錯角相等,故A錯誤;B.-1是有理數(shù),故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.4、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).5、B【解析】

設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.6、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.7、A【解析】

作出反比例函數(shù)的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.8、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據(jù)棱錐的概念判斷.9、C【解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數(shù);關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數(shù).10、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣x-2x【解析】

直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.12、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.13、【解析】

將一次函數(shù)解析式代入二次函數(shù)解析式中,得出關于x的一元二次方程,根據(jù)根與系數(shù)的關系得出“x+x=-=,xx==-1”,將原代數(shù)式通分變形后代入數(shù)據(jù)即可得出結(jié)論.【詳解】將代入到中得,,整理得,,∴,,∴.【點睛】此題考查了二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì),解題關鍵在于將一次函數(shù)解析式代入二次函數(shù)解析式14、1【解析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數(shù)y=經(jīng)過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內(nèi)切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質(zhì)以及三角形內(nèi)切圓的性質(zhì)以及待定系數(shù)法求反比例函數(shù)解析式,根據(jù)已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.15、18π【解析】

根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.16、③【解析】

根據(jù)直線與點的位置關系即可求解.【詳解】①點A在直線BC上是錯誤的;②直線AB經(jīng)過點C是錯誤的;③直線AB,BC,CA兩兩相交是正確的;④點B是直線AB,BC,CA的公共點是錯誤的.故答案為③.【點睛】本題考查了直線、射線、線段,關鍵是熟練掌握直線、射線、線段的定義.三、解答題(共8題,共72分)17、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關鍵是明確解一元一次不等式組的方法.18、(1)見解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點睛:此題主要考查了切線的性質(zhì)和應用,以及勾股定理的應用,要熟練掌握.19、(1);(2)①2,②【解析】分析:(1)重合部分是等邊三角形,計算出邊長即可.①證明:在圖3中,取AB中點E,證明≌,即可得到,②由①知,在旋轉(zhuǎn)過程60°中始終有≌四邊形的面積等于=.詳解:(1)∵四邊形為菱形,∴∴為等邊三角形∴∵AD//∴∴為等邊三角形,邊長∴重合部分的面積:①證明:在圖3中,取AB中點E,由上題知,∴又∵∴≌,∴∴,②由①知,在旋轉(zhuǎn)過程60°中始終有≌∴四邊形的面積等于=.點睛:屬于四邊形的綜合題,考查了菱形的性質(zhì),全等三角形的判定與性質(zhì)等,熟練掌握每個知識點是解題的關鍵.20、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.21、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.22、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.23、(1),,;(2)作圖見解析,面積,.【解析】

(1)由在平面直角坐標系中的位置可得A、B、C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論