下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
選修2-2第二章2.一、選擇題1.用反證法證明命題“如果a>b>0,那么a2>b2”時(shí),假設(shè)的內(nèi)容應(yīng)是eq\x(導(dǎo)學(xué)號(hào)10510585)()A.a(chǎn)2=b2 B.a(chǎn)2<b2C.a(chǎn)2≤b2 D.a(chǎn)2<b2,且a2=b2[答案]C2.用反證法證明命題:“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一個(gè)是偶數(shù)”時(shí),下列假設(shè)中正確的是eq\x(導(dǎo)學(xué)號(hào)10510586)()A.假設(shè)a、b、c都是偶數(shù)B.假設(shè)a、b、c都不是偶數(shù)C.假設(shè)a、b、c至多有一個(gè)偶數(shù)D.假設(shè)a、b、c至多有兩個(gè)是偶數(shù)[答案]B[解析]“至少有一個(gè)”的對(duì)立面是“一個(gè)都沒有”.3.實(shí)數(shù)a、b、c不全為0等價(jià)于eq\x(導(dǎo)學(xué)號(hào)10510587)()A.a(chǎn)、b、c均不為0B.a(chǎn)、b、c中至多有一個(gè)為0C.a(chǎn)、b、c中至少有一個(gè)為0D.a(chǎn)、b、c中至少有一個(gè)不為0[答案]D[解析]“不全為0”的含義是至少有一個(gè)不為0,其否定應(yīng)為“全為04.下列命題錯(cuò)誤的是eq\x(導(dǎo)學(xué)號(hào)10510588)()A.三角形中至少有一個(gè)內(nèi)角不小于60°B.四面體的三組對(duì)棱都是異面直線C.閉區(qū)間[a,b]上的單調(diào)函數(shù)f(x)至多有一個(gè)零點(diǎn)D.設(shè)a,b∈Z,若a,b中至少有一個(gè)為奇數(shù),則a+b是奇數(shù)[答案]D[解析]a+b為奇數(shù)?a,b中有一個(gè)為奇數(shù),另一個(gè)為偶數(shù).故D錯(cuò)誤.5.設(shè)a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,則“PQR>0”是P、Q、R同時(shí)大于零的eq\x(導(dǎo)學(xué)號(hào)10510589)()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分又不必要條件[答案]C[解析]若P>0,Q>0,R>0,則必有PQR>0;反之,若PQR>0,也必有P>0,Q>0,R>0.因?yàn)楫?dāng)PQR>0時(shí),若P、Q、R不同時(shí)大于零,則P、Q、R中必有兩個(gè)負(fù)數(shù),一個(gè)正數(shù),不妨設(shè)P<0,Q<0,R>0,即a+b<c,b+c<a,兩式相加得b<0,這與已知b∈R+矛盾,因此必有P>0,Q>0,R>0.6.若m、n∈N*,則“a>b”是“am+n+bm+n>anbm+ambn”的eq\x(導(dǎo)學(xué)號(hào)10510590)()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件[答案]D[解析]am+n+bm+n-anbm-ambn=an(am-bm)+bn(bm-am)=(am-bm)(an-bn)>0?eq\b\lc\{\rc\(\a\vs4\al\co1(am>bm,an>bn))或eq\b\lc\{\rc\(\a\vs4\al\co1(am<bm,an<bn)),不難看出a>b?/am+n+bm+n>ambn+anbm,am+n+bm+n>ambn+bman?/a>b.二、填空題7.“x=0且y=0”的否定形式為\x(導(dǎo)學(xué)號(hào)10510591)[答案]x≠0或y≠0[解析]“p且q”的否定形式為“?p或?q”.8.和兩條異面直線AB、CD都相交的兩條直線AC、BD的位置關(guān)系是\x(導(dǎo)學(xué)號(hào)10510592)[答案]異面[解析]假設(shè)AC與BD共面于平面α,則A,C,B,D都在平面α內(nèi),∴AB?α,CD?α,這與AB,CD異面相矛盾,故AC與BD異面.9.在空間中有下列命題:①空間四點(diǎn)中有三點(diǎn)共線,則這四點(diǎn)必共面;②空間四點(diǎn),其中任何三點(diǎn)不共線,則這四點(diǎn)不共面;③垂直于同一直線的兩直線平行;④兩組對(duì)邊分別相等的四邊形是平行四邊形.其中真命題是\x(導(dǎo)學(xué)號(hào)10510593)[答案]①[解析]四點(diǎn)中若有三點(diǎn)共線,則這條直線與另外一點(diǎn)必在同一平面內(nèi),故①真;四點(diǎn)中任何三點(diǎn)不共線,這四點(diǎn)也可以共面,如正方形的四個(gè)頂點(diǎn),故②假;正方體交于同一頂點(diǎn)的三條棱所在直線中,一條與另兩條都垂直,故③假;空間四邊形ABCD中,可以有AB=CD,AD=BC,例如將平行四邊形ABCD沿對(duì)角線BD折起構(gòu)成空間四邊形,這時(shí)它的兩組對(duì)邊仍保持相等,故④假.三、解答題10.(2023·吉林高二檢測)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求證:a,b,c,d中至少有一個(gè)是負(fù)數(shù).eq\x(導(dǎo)學(xué)號(hào)10510594)[解析]假設(shè)a,b,c,d都是非負(fù)數(shù),因?yàn)閍+b=c+d=1,所以(a+b)(c+d)=1,又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,這與已知ac+bd>1矛盾,所以a,b,c,d中至少有一個(gè)是負(fù)數(shù).一、選擇題1.已知a,b是異面直線,直線c平行于直線a,那么c與b的位置關(guān)系為eq\x(導(dǎo)學(xué)號(hào)10510595)()A.一定是異面直線 B.一定是相交直線C.不可能是平行直線 D.不可能是相交直線[答案]C[解析]假設(shè)c∥b,而由c∥a,可得a∥b,這與a,b異面矛盾,故c與b不可能是平行直線.故應(yīng)選C.2.已知a、b、c∈(0,1).則在(1-a)b、(1-b)c、(1-c)a中,eq\x(導(dǎo)學(xué)號(hào)10510596)()A.不能同時(shí)大于eq\f(1,4) B.都大于eq\f(1,4)C.至少一個(gè)大于eq\f(1,4) D.至多有一個(gè)大于eq\f(1,4)[答案]A[解析]證法1:假設(shè)(1-a)b、(1-b)c、(1-c)a都大于eq\f(1,4).∵a、b、c都是小于1的正數(shù),∴1-a、1-b、1-c都是正數(shù).eq\f(1-a+b,2)≥eq\r(1-ab)>eq\r(\f(1,4))=eq\f(1,2),同理eq\f(1-b+c,2)>eq\f(1,2),eq\f(1-c+a,2)>eq\f(1,2).三式相加,得eq\f(1-a+b,2)+eq\f(1-b+c,2)+eq\f(1-c+a,2)>eq\f(3,2),即eq\f(3,2)>eq\f(3,2),矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于eq\f(1,4).證法2:假設(shè)三個(gè)式子同時(shí)大于eq\f(1,4),即(1-a)b>eq\f(1,4),(1-b)c>eq\f(1,4),(1-c)a>eq\f(1,4),三式相乘得(1-a)b(1-b)c(1-c)a>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)))3①因?yàn)?<a<1,所以0<a(1-a)≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1-a+a,2)))2=eq\f(1,4).同理,0<b(1-b)≤eq\f(1,4),0<c(1-c)≤eq\f(1,4).所以(1-a)a(1-b)b(1-c)c≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)))3.②因?yàn)棰倥c②矛盾,所以假設(shè)不成立,故選A.二、填空題3.用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過程歸納為以下三個(gè)步驟:eq\x(導(dǎo)學(xué)號(hào)10510597)①∠A+∠B+∠C=90°+90°+∠C>180°,這與三角形內(nèi)角和為180°相矛盾,則∠A=∠B=90°不成立;②所以一個(gè)三角形中不能有兩個(gè)直角;③假設(shè)∠A、∠B、∠C中有兩個(gè)角是直角,不妨設(shè)∠A=∠B=90°.正確順序的序號(hào)排列為____________.[答案]③①②[解析]由反證法證明的步驟知,先反設(shè)即③,再推出矛盾即①,最后作出判斷,肯定結(jié)論即②,即順序應(yīng)為③①②.4.(2023·鄭州高二檢測)設(shè)a,b是兩個(gè)實(shí)數(shù),給出下列條件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一個(gè)大于1”的條件是______(填序號(hào)).eq\x(導(dǎo)學(xué)號(hào)10510598)[答案]③[解析]對(duì)于①②④可舉反例,說明條件不能推出結(jié)論,如①中:a=b=eq\f(1,2),②中:a=b=1,④中:a=-1,b=-2.對(duì)于③,反設(shè)a,b都小于等于1,則a+b≤2與已知矛盾.∴假設(shè)不成立,故③正確.三、解答題5.如圖所示,在△ABC中,AB>AC,AD為BC邊上的高,AM是BC邊上的中線,求證:點(diǎn)M不在線段CD上.eq\x(導(dǎo)學(xué)號(hào)10510599)[證明]假設(shè)點(diǎn)M在線段CD上,則BD<BM=CM<CD,且AB2=BD2+AD2,AC2=AD2+CD2,所以AB2=BD2+AD2<BM2+AD2<CD2+AD2=AC2,即AB2<AC2,所以AB<AC.這與AB>AC矛盾,故假設(shè)錯(cuò)誤.所以點(diǎn)M不在線段CD上.6.已知數(shù)列{an}滿足:a1=eq\f(1,2),eq\f(31+an+1,1-an)=eq\f(21+an,1-an+1),anan+1<0(n≥1);數(shù)列{bn}滿足:bn=aeq\o\al(2,n+1)-aeq\o\al(2,n)(n≥1).eq\x(導(dǎo)學(xué)號(hào)10510600)(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;(2)證明:數(shù)列{bn}中的任意三項(xiàng)不可能成等差數(shù)列.[解析](1)由題意可知,1-aeq\o\al(2,n+1)=eq\f(2,3)(1-aeq\o\al(2,n)).令cn=1-aeq\o\al(2,n),則cn+1=eq\f(2,3)cn.又c1=1-aeq\o\al(2,1)=eq\f(3,4),則數(shù)列{cn}是首項(xiàng)為c1=eq\f(3,4),公比為eq\f(2,3)的等比數(shù)列,即cn=eq\f(3,4)·(eq\f(2,3))n-1,故1-aeq\o\al(2,n)=eq\f(3,4)·(eq\f(2,3))n-1?aeq\o\al(2,n)=1-eq\f(3,4)·(eq\f(2,3))n-1.又a1=eq\f(1,2)>0,anan+1<0,故an=(-1)n-1eq\r(1-\f(3,4)·\f(2,3)n-1).bn=aeq\o\al(2,n+1)-aeq\o\al(2,n)=[1-eq\f(3,4)·(eq\f(2,3))n]-[1-eq\f(3,4)·(eq\f(2,3))n-1]=eq\f(1,4)·(eq\f(2,3))n-1.(2)用反證法證明.假設(shè)數(shù)列{bn}存在三項(xiàng)br,bs,bt(r<s<t)按某種順序成等差數(shù)列,由于數(shù)列{bn}是首項(xiàng)為eq\f(1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商場運(yùn)營服務(wù) 合同范例
- 敏捷開發(fā)合同范例
- 臨床醫(yī)學(xué)概論(內(nèi)科)練習(xí)題(含參考答案)
- N2級(jí)護(hù)理人員理論考核考試模擬題+參考答案
- 農(nóng)村地契合同范例
- 市政ppp項(xiàng)目合同范例
- 物業(yè)培訓(xùn)合同范例范例
- 土地流轉(zhuǎn)抵押合同范例
- 烏龜買賣合同范例
- 2025年大理道路貨物運(yùn)輸從業(yè)資格證考試
- 護(hù)士延續(xù)注冊(cè)體檢表
- 泌尿科一科一品匯報(bào)課件
- 西湖生死學(xué)智慧樹知到期末考試答案章節(jié)答案2024年浙江傳媒學(xué)院
- 不同地區(qū)城鎮(zhèn)化的過程和特點(diǎn)(第1課時(shí))高中地理中圖版(2019)必修二
- 一年級(jí)數(shù)學(xué)20以內(nèi)計(jì)算練習(xí)湊十法、破十法、借十法、平十法
- 中國痔病診療指南(2020版)
- 創(chuàng)辦精神病醫(yī)院申請(qǐng)
- 2024征信考試題庫(含答案)
- 學(xué)生學(xué)習(xí)概覽StudentLearningProfile
- 小班數(shù)學(xué)《認(rèn)識(shí)1到10的數(shù)字》課件
- 手工花項(xiàng)目策劃書
評(píng)論
0/150
提交評(píng)論