餃子機(jī)及輸送成型部件設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第1頁
餃子機(jī)及輸送成型部件設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第2頁
餃子機(jī)及輸送成型部件設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第3頁
餃子機(jī)及輸送成型部件設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第4頁
餃子機(jī)及輸送成型部件設(shè)計(jì)畢業(yè)設(shè)計(jì)論文_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

編號(hào)無錫太湖學(xué)院畢業(yè)設(shè)計(jì)(論文)相關(guān)資料題目:餃子機(jī)及輸送成型部件設(shè)計(jì)信機(jī)系機(jī)械工程及自動(dòng)化專業(yè)學(xué)號(hào):0923015學(xué)生姓名:指導(dǎo)教師:(職稱:副教授)(職稱:)201目錄一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”四、實(shí)習(xí)鑒定表無錫太湖學(xué)院畢業(yè)設(shè)計(jì)(論文)開題報(bào)告題目:餃子機(jī)及輸送成型部件設(shè)計(jì)信機(jī)系機(jī)械工程及自動(dòng)化專業(yè)學(xué)號(hào):0923015學(xué)生姓名:指導(dǎo)教師:(職稱:副教授)(職稱:)2012課題來源自擬題目科學(xué)依據(jù)(包括課題的科學(xué)意義;國內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)(1)課題科學(xué)意義餃子食品機(jī)械的應(yīng)用前景和發(fā)展現(xiàn)狀餃子食品在我國歷史悠久,伴隨著幾千年的文明的發(fā)展已經(jīng)成為我國食品文化中的代表,如餃子、包子、餛飩是主食的一部分;湯圓、月餅、粽子是傳統(tǒng)節(jié)日中必不可缺的食物。如今,經(jīng)濟(jì)的迅速增長(zhǎng)、人民生活水平的提高和生活節(jié)奏的加快,對(duì)食品行業(yè)提出了新的要求。而本人認(rèn)為這些要求可以歸納為兩大類:其一是食品的質(zhì)量:如食用口感、衛(wèi)生狀況、營養(yǎng)含量等。其二便是食品供應(yīng)的速度。而解決這兩個(gè)矛盾要求的辦法便是實(shí)現(xiàn)食品生產(chǎn)的機(jī)械化和自動(dòng)化,通過機(jī)械動(dòng)作可以極大程度的提高食品的生產(chǎn)率;采用環(huán)保的機(jī)械材料和嚴(yán)格的密封技術(shù)可以很好的保證食品衛(wèi)生;而合理的工藝編排更能改善食品的口感。(2)餃子機(jī)的研究狀況及其發(fā)展前景目前國內(nèi)外廠家在包餡夾餡食品機(jī)械化上的研究已經(jīng)取得了一定的成果成功研發(fā)了餃子機(jī)、包子機(jī)、餛飩機(jī)、湯圓機(jī)、月餅機(jī)以及自動(dòng)化程度更高的全自動(dòng)萬能包餡機(jī)。因東西方飲食文化的差異,目前國外包餡成型類機(jī)械主要為日本所生產(chǎn),如日產(chǎn)的自動(dòng)萬能包餡機(jī),其最大生產(chǎn)能力可達(dá)每小時(shí)8000個(gè),且加工范圍極廣,能生產(chǎn)各式饅頭、包子、餃子、夾餡餅干、壽司、等等近百種產(chǎn)品,采用可拆卸料斗能實(shí)現(xiàn)快速更換餡料,內(nèi)置的無級(jí)變速調(diào)控裝置可以實(shí)現(xiàn)皮和餡的任意配比。廣泛用于各種帶餡食品的加工。而國內(nèi)相關(guān)機(jī)械雖然在自動(dòng)化和多功能方面較之日本產(chǎn)品還有一定的差距,但是通過改革開放以后二十余年的發(fā)展亦取得了很大的進(jìn)步。以上海滬信飲料食品機(jī)械有限公司生產(chǎn)的水餃機(jī)為例:配備1.1Kw的電動(dòng)機(jī),生產(chǎn)效率達(dá)每小時(shí)7000個(gè)。已相當(dāng)接近日產(chǎn)餃子機(jī)的生產(chǎn)水平。每逢過年過節(jié)現(xiàn)做現(xiàn)賣餃子往往出現(xiàn)供不應(yīng)求的現(xiàn)象。當(dāng)然也有很多人選擇在家里自己做餃子,卻需要提前半天甚至一天進(jìn)行準(zhǔn)備,而包餃子的時(shí)候更是要叫上好幾個(gè)親朋過來幫忙方可。因此如果能研究開發(fā)一種能夠以機(jī)械動(dòng)作代替人工勞動(dòng)的機(jī)器,那么除了可以節(jié)約大量的時(shí)間、降低餃子的生產(chǎn)成本、提高利潤(rùn)之外,更可以免除人們冬日里冒寒排隊(duì)購物之苦,一舉多得。餃子生產(chǎn)機(jī)的初步目標(biāo)確定為能夠?qū)崿F(xiàn)子包餡工藝的機(jī)械化。未來可在此基礎(chǔ)上加以改進(jìn)和擴(kuò)展,以實(shí)現(xiàn)橫縱兩方向發(fā)展,即餃子生產(chǎn)全過程的無人干預(yù)自動(dòng)化與多功能化研究?jī)?nèi)容①熟悉餃子機(jī)的工作原理與結(jié)構(gòu);②熟悉餃子機(jī)輸送成型部件的布置與結(jié)構(gòu);③熟練掌握絞龍、葉片泵的設(shè)計(jì)計(jì)算方法;④掌握CAD的使用方法。擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析(1)實(shí)驗(yàn)方案對(duì)餃子機(jī)的整體的設(shè)計(jì),確定面料和餡料的輸送方式與設(shè)備結(jié)構(gòu),確定餃子成型方式,使其能夠半自動(dòng)的進(jìn)行加工。(2)研究方法用CAD進(jìn)行二維畫圖,對(duì)餃子機(jī)結(jié)構(gòu)有個(gè)全面的了解。對(duì)餃子機(jī)的輸送成型部分進(jìn)行計(jì)算與結(jié)構(gòu)設(shè)計(jì),使其滿足物料的輸送要求,并加工出合適形狀的餃子。研究計(jì)劃及預(yù)期成果研究計(jì)劃:2012年10月12日-20122013年1月12013年1月282013年3月4日-2013年4月12013年4月15日-2013年4月29預(yù)期成果:達(dá)到預(yù)期的畢業(yè)設(shè)計(jì)要求,設(shè)計(jì)出的餃子機(jī)可以進(jìn)行半自動(dòng)加工,可以快速美觀的加工出餃子,并且輸送穩(wěn)定有效、成型簡(jiǎn)單、滿足工作要求。特色或創(chuàng)新之處①餃子機(jī)可以無需手工進(jìn)行制作。②餃子制作過程安全,方便,快速,可以批量生產(chǎn)。已具備的條件和尚需解決的問題①設(shè)計(jì)方案思路已經(jīng)明確,已經(jīng)具備機(jī)械設(shè)計(jì)能力和餃子機(jī)方面的知識(shí)。②進(jìn)行結(jié)構(gòu)設(shè)計(jì)的能力尚需加強(qiáng)。指導(dǎo)教師意見指導(dǎo)教師簽名:年月日教研室(學(xué)科組、研究所)意見教研室主任簽名:年月日系意見主管領(lǐng)導(dǎo)簽名:年月日英文原文CaseStudyTheoreticalandpracticalaspectsofthewearofvanepumpsPartA.AdaptationofamodelforpredictivewearcalculationAbstractTheaimofthisinvestigationisthedevelopmentofamathematicaltoolforpredictingthewearbehaviourofvanepumpsuscdinthestandardmethodforindicatingthewcarcharactcristicsofhydraulicfluidsaccordingtoASTMD2882/DIN51389.Thederivationofthecorrespondingmathematicalalgorithmisbasedonthedescriptionofthecombinedabrasiveandadhesivewearphenomenaoccurringontheringandvanesofthepumpbytheshearenergyhypothesis,inconnectionwithstochasticmodellingofthecontactingroughsurfacesastwo-dimensionalisotropicrandomfields.Startingfromacomprehensiveanalysisofthedecisivering-vanetribocontact,whichsuppliesessentialinputdataforthewearcalculation,thecomputationalmethodisadaptedtotheconcretegeometrical,motionalandloadingconditionsofthetribosystemvanepumpandextendedbyinclusionofpartialelastohydrodynamiclubricationinthemathematicalmodej.Forcomparisonofthecalculatedwearbehaviourwithexpenmentalresults,atestseriesonarigdescribedinPartBwascarriedout.Amineraloil-basedlubricantwithoutanyadditiveswasusedtoexcludetheinfluenceofadditiveswhichcannotbedescribedinthemathematicalmodel.Agoodqualitativecorrespondencebetweencalculationandexperimentregardingthetemporalwearprogressandtheamountofcalculatedwearmasswasachieved.Keywords:Mathematicalmodelling;Simulationofwearmechanisms;Weartestingdevices;Hydraulicvanepumps;Elastohydrodynamiclubrication;Surfaceroughness1.IntroductionInthisstudy,thepreliminaryresultsofanewmethodologicalapproachtothedevelopmentoftribo-metersforcomplicatedtribosysLemsarepresented.Thebasicconceptinvolvesthederivationofamathematicalalgofithmforwearcalculationinaninteractiveprocesswithexperiments,whichcanbeusedmodelofthetribosystemtobesimulated.Inthisway,anadditionaldesigntooltoachievethecorrelationofthewearratesofthemodelandoriginalsystemiscreated.TheinvestigationsareperformedfortheVickersvanepumpV104CusedinthestandardmethodforindicatingthewearcharacteristicsofhydraulicfluidsaccordingtoASTMD2882/DIN51389.Inafirststep,amathematicaltheorybasedonthedescriptionofabrasiveandadhesivewearphenomenabytheshearenergyhypothesis,andincludingstochasticmodellingofthecontactingroughsurfaces,isadaptedtothetribologicalrealityofthevanepump,extendedbyaspectsofpartialelastohydrodynamiclubricationandverifiedbycorrespondingexperiments.PartAofthisstudyisdevotedtothemathematicalmodellingofthewearbehaviourofthevanepumpandtotheverificationoftheresultingalgorithm;experimentalwearinvestigationsrepresentthefocalpointofPartB,andthesearecomparedwiththeresultsofthecomputationalmethodderivedinPartA.2.AnalysisofthetribocontactTheVickersvanepumpV104Cisconstructedasapumpforconstantvolumeflowperrevolution.Thesystempressureisledtothebottomsideofthe12vanesintherotorslotstosealthecellsformedbyeachpairofvanes,thering,therotorandthebushingsinthetribologicallyinterestinglinecontactofthevaneandinnercurvatureofthering(Fig.1).Simultaneously,allothervanesidesarestressedwithdifferentandperiodicallyalternatingpressuresofthefiuid.Acomprehensivestructureandstressanalysisbasedonquasistaticmodellingofallinertialforcesactingonthepump,andconsideringtheinnercurvatureofthering,theswivelmotionofthevanesinrelationtothetangentofcurvatureandtheloadingassumptions,isdescribedinRefs.[1-3].Thereby,acharacteristicgraphforthecontactforceFeasafunctionoftheturnanglecanbeobtained,whichdependsonthegeometryofthevanesusedineachrunandthesystempressure.Fromthis,theinnercurvatureoftheringcanbedividedintofourzonesofdifferentloadingconditionsinvane-ringtribocontact(Fig.2),whichisingoodagreementwiththewearmeasurementsontherings:intheareaofmaximumcontactforce(zonen),thehighestlinearwearcouldbefound[2,3](seealsoPartB).3.Mathematicalmodelling3.1.BasicrelationsforwearcalculationThevaneandringshowcombinedabrasiveandadhesivewearphenomena(Fig.3).ThebasicconceptsofthetheoryforthepredictivecalculationofsuchwearphenomenaaredescribedinRefs.[4-6].Startingfromtheassumptionthatweariscausedbysheareffectsinthesurfaceregionsofcontactingbodiesinrelativemotion,thefundamentalequation(1)forthelinearwearintensityIhinthestationarywearstatecanbederived,whichcontainsthespecificshearenergydensityes/ro,interpretableasamaterialconstant,andtherealareaArsoftheasperitycontactsundergoingshear.Todeterminethisrealcontactarea,thede-scriptionofthecontactingroughsurfacesastwo-dimensionalisotropicgaussianfieldsaccordingtoRef.[7]isincludedinthemodelling.Thustheimplicitfunctionalrelationwiththeweightfunction(2)isfound,whichcanbeusedtocalculatethesurfaceratioinEq.(1)forunlubricatedcontactsfromthehertzianpressurePaactingintheinvestigatedtribocontactbyacomplicatediterativeprocessdescribedinRefs.[6,8].TheconcretestructureofthefunctionsFandcdependsontherelativemotionofthecontactingbodies(sliding,rolling).Theparametera-(m0m4)/m22representsthepropertiesoftheroughsurfacebyitsspectralmoments,whichcanbedeter-minedstatisticallyfromsurfaceprofilometry,andtheplasticityindex妒=(mOm4)y4(E'/H)isameasureoftheratioofelasticandplasticmicrocontacts.3.2.ExtensiontolubricatedcontactsThealgorithmresultingfromthebasicrelationsforwearcalculationwasappliedsuccessfullytounlubricatedtribosystems[8].ThefirstconceptsforinvolvinglubricationinthemathematicalmodelaredevelopedinRef.[8].Theyarebasedontheapplicationoftheclassicaltheoryofelastohydrodynamiclubrication(EHL)tothemicrocontactsoftheasperities,neglectingthefactthatthereisalsoa"macrolubricationfilm"whichseparatesthecontactingbodiesandisinterruptedinthecaseofpartiallubricationbytheasperitymicrocontacts.Thereforetheiruseforcalculatingpracticalwearproblemsleadstounsatisfactoryresults[9].Theyareextendedherebyincludingthefollowingassump-tionsinthemathematicalmodel.(1)Lubricationcausestheseparationofcontactingbodiesbyamacrofilmwithameanthicknessu.whichcanbeexpressedintermsofthesurfaceroughnessby[10](3)Whereu0isthemeanfilmthinknessaccordingtoclassicalEHLtheorybetweentwoideallysmoothbodies,whichcanbedeterminedforlinecontactofthevaneandringby[11](2)Inthecaseofpartiallubrication,themacrofilmisinterruptedduringasperitycontacts.Aplasticmicrocontactisinterpretedasapuresolidstatecontact,whereasforanelasticcontacttheroughnessissuperimposedbyamicrolubricationfilm.Becauseofthemodellingoftheasperitiesassphericalindenters,themicrofilmthicknesscanbedeterminedusingtheEHLtheoryforsphere-planecontacts,whichisrepresentedintherandommodelbytheslidingnumber[8](5)(3)Thehertzianpressureactinginthemacrocontactworksintwoparts:asahydrodynamicpressurepEHbornebythemacrolubricationfilmandasapressurepFKbornebytheroughnessinsolidbodycontact.(4)Forpuresolidstatecontacts,itisassumedthatthelimitforthemeanrealpressureprFKwhichanasperitycanresistwithoutplasticdeformationcanbeestimatedbyone-fifthtoone-sixthofitshardness(6)InvestigationsonthecontactstiffnessinRef.[11]haveledtotheconclusionthattheelasticpropertiesofthelubricationfilmcauseareliefoftheasperities,whichmeansthattherealpressureworkingontheasperityisdamped.Therefore,inthemathematicalmodelforlubricatedtribosystems,anadditionaltermfffin,whichcorrectstheupperlimitoftherealpressureasafunctionofthefilmthickness,isintroducedp,EH=prFK[1-fcorr(U)](7)Thisformulacanbeusedtodetermineamodifiedplasticityindex{PEHforlubricatedcontactsaccordingtoRef.[8].Altogether,thebasicmodelforwearcalculationcanbeextendedforlubricatedtribosystemsbyreplacingrelation(2)by(8)(3)3.3.Adaptationtothetribo’systemvanepumpToapplythemathematicalmodelforwearcalculationtoaconcretetribosystem,allmaterialdata(specificmaterialandfluidproperties,roughnessparameters)usedbythealgorithmmustbedetermined(seePartB).Moreover,themodelmustbeadaptedtothemechanicalconditionsofthewearprocessinvestigated.Ontheonehand,thisisrelatedtotherelativemotionofthebodiesintribocontact,whichinfluencestheconcretestructureoffunctionfinformulae(2)and(8).Inthecaseofvane-ringcontact,slidingwithsuperimposedrollingduetotheswivelmotionofthevaneswasmodelled(9)Adetailedderivationofthecorrespondingformulaeforfslidingandf.ollingcanbefoundinRefs.[8,9].Ontheotherhand,thehertzianpresstirePaactingontribocontactduringthewearprocesshasanesseritialimportanceinthewearcalculation.Forthetribosystemvanepump,themeancontactforceFeineachloadingzonecanberegardedasconstant,whereasthehertzianpressuredecreaseswithtime.Thereasonforthisistheweardebrisonthevane,whichcausesachange'nthevanetipshapewithtime,leadingtoanincreasedcontactradiusand,accordingly,alargercontactareaTodescribethisphenomenonbythemathematicalwearmodel,thevolumeremovalWvlofonevaneintermsoftherespectivecontactradiusRi(t)attimetandtheslidingdistanceSR(Rl(t》isgivenby(10)wheretheconstantsaandbcanbedeterminedbyregressionfromthegeometricaldataofthetestedvanes.ThecorrespondingslidingdistancenecessarytoreachacertainradiusRiduetovanewearcanbeexpressedusingthebasicequation(1):(11)Thus,applyingEq.(11)togetherwithEq.(10)totherelation(12)itispossibletoderivethefollowingdifferentialequationfortherespectivevolumeremovalWvllofthering,whichcanbesolvedbyanumericalprocedure(13)TherequiredwearintensitiesofthevaneandringcanbecalculatedbyEq.(8)asafunctionofthecontactradiusfromthehertzianpressuresworkingineachloadingzone,whichareavailablefromthecontactforcebythewell-knownhertzianformulae.3.4PossibilitiesofverificationIfallinputdataareavailableforaconcretevanepumprun(theconcretegeometrical,materialandmechanicalconditionsinthecartridgeusedandthespecificfluidproperties,seePartB),themathematicalmodelforthecalculationofthewearofvanepumpsderivedabovecandescribequantitativelythefollowingrelations.(1)TheslidingdistanceSR(RI)and,ifthenumberofrevolutionsofthepumpandthesizeoftheinnerringsurfaceareknown,therespectiveruntimetofthepumpwhichisnecessarytoreachacertainshapeofthevanetipsduetowear.(2)ThevolumeremovalW,.:uri(t)andthewearmassesWmW(t)ofthevaneandringasafunctionoftheruntimet.(3)ThemeanlocallinearwearWl(t)ineveryloadingzoneontheringattimet.Thusanimmediatecomparisonbetweenthecalculatedandexperimentallyestablishedwearbehaviour,withregardtothewearprogressintime,thelocalwearprogressontheringandthewearmassesatacertaintimet,becomespossible.4。ResultsInthisstudy,theverificationofthetheoreticalresultsobtainedbycomparisonwithexperimentsisbasedonatestseriesonarigaccordingtoDIN51389describedindetailinPartB.Thesamemineraloil-basedlubricant,withoutanyadditives,wasusedineachruntoexcludetheinfluenceofadditivesonthewearbehaviour,whichcouldnotbedescribedinthemathematicalmodel.Asinputdataforthecalculation,themeanvaluesofallthequantitiesneededbythealgorithmweredeterminedfromfour250htestrunswhichwerecarriedoutunderequivalenttestconditions.Thefollowingresultswereobtained.(1)Thecalculatedtemporalwearcurveforthevanes,resultingfromapproximation(9),isingoodqualitativeagreementw:iththemeasurementsinRef.[2](degressivecharacterandlengthoftheinletphase(seePartB》.Moreover,thecalculatedwearmassesafteraruntimeof250hcorrespondquantitativelywiththeexperimentalresults(Fig.5).(2)Forthering,adegressrveweartrendwasfoundbycalculation,whichisassumedtobearealisticresultinassociationwiththecorrespondingdegressivetrendofvanewearexperimentallyestablishedinRef.[2].Thecalculatedtotalwearmasses,whichrepresentthesumofthewearmassesachievedineachloadingzoneattimet,conformwiththewearmassesmeasuredin250hrunsaswellasshort-timerunsof10h(Fig.6).(3)ThewearmassescalculatedforeachseparateloadingzoneontheringareinquantitativeagreementwiththecorrespondingorderofthecontactforceFe(Fig.6).(4)Thedependenceofthewearbehaviourontemperatureduringtribocontact,representedinthemathematicalmodelbythedependenceofthelubricantpropertiesontemperature,issuitablyreflectedbythecalculation(Fig.7).Furtherresults,especiallywithregardtoacomparisonofthecalculatedandmeasuredlocallinearwearonthering,aredcscribcdinPartB.5.ConclusionsThemathematicalalgorithmforthecalculationofwearonvanepumpspresentedinthisstudyenablestheexperimentallyestablishedwearbehaviourofthetribosysteminvestigatedtoberetracedqualitativelyandquantitatively.Thustheextensionsintroducedtocoverpartialelastohydrodynamiclubricationhaveprovedasuccessandrepresentanessentialimprovementoftheresultsachievedsofar[9].Inthisway,thepreconditionsforthedevelopmentofamathematicaltoolforwearpredictionandforsimulationofthewearbehaviourofatribometerforthetribosystemvanepumphavebeencreated.Forfurtherqualificationofthemathematicalmodeltoachievearealforecastofthewearbehaviour,theoreticalinvestigationscombinedwithexperimentsmustbeenforced,espeaallywithregardtothefollowingtopics:(1)inclusionoftheinletphaseofthewearprocessinthemodel(sofar,themathematicalmodelisrelatedonlytothestationarywearstate;analgorithmmustbecreatedwhichisbasedexclusivelyontheinputdataobtainablebeforestartingthewearprocessandwhichcansuccessivelyadaptthedatausedbythecalculationtorealwearprogress);(2)extensionofthemodeltopracticallyimportantlubricantswithadditives(thiscanbeachievedinafirststepbyusingaheuristicrelationtodescribetheinfluenceofadditivesonthewearbehaviour,derivedfromcorrespondingtestScrieSwithscVerallubricants).中文譯文在理論和實(shí)踐方面葉片泵磨損的研究(A部分):為適應(yīng)預(yù)測(cè)磨損計(jì)算模型R.Gellricha,A.Kunzb,G.Beckmann‘,E.Broszeitba大學(xué)科技,經(jīng)濟(jì)和社會(huì)科學(xué)Zittaul/Gorlitz,數(shù)學(xué)和自然科學(xué)學(xué)院,Th.-Kiirner-阿利16處,02763齊陶,德國

b材料科學(xué)研究所,達(dá)姆施塔特技術(shù)大學(xué),Grafenstr。二,64283達(dá)姆施塔特,GermanyPetersilienshz二維,03044科特布斯,德國

1994年3月29摘要本次調(diào)查的目標(biāo)是預(yù)測(cè)用于判斷液壓流體的磨損特性的葉片泵的磨損行為的一種數(shù)學(xué)工具的發(fā)展,根據(jù)ASTMD2882/DIN51標(biāo)準(zhǔn)方法389。相應(yīng)的數(shù)學(xué)算法的推導(dǎo)是基于合并后的描述和磨料粘著磨損現(xiàn)象發(fā)生在環(huán)和假說的剪切能在葉片泵連接,與隨機(jī)建模為二維各向同性隨機(jī)粗糙表面接觸領(lǐng)域。從環(huán)葉片摩擦接觸的決定性全面分析開始,為磨損計(jì)算,適應(yīng)具體的幾何,運(yùn)動(dòng)和摩擦系統(tǒng)葉片泵的負(fù)荷條件,被部分彈流潤(rùn)滑延長(zhǎng)列入數(shù)學(xué)模型的計(jì)算方法提供了必要的輸入數(shù)據(jù)。對(duì)于磨損性能的計(jì)算與試驗(yàn)結(jié)果的比較,對(duì)鉆機(jī)的一系列測(cè)試在B部分的敘述中會(huì)提出。不含任何添加劑的礦物油基潤(rùn)滑劑,采用排除添加劑的影響,不能在數(shù)學(xué)模型描述出來。在計(jì)算和實(shí)驗(yàn)之間的一個(gè)良好的定性關(guān)系隨著時(shí)間磨損過程和計(jì)算磨損質(zhì)量的量達(dá)到了。關(guān)鍵詞:數(shù)學(xué)模型;磨損機(jī)理模擬;磨損試驗(yàn)裝置,液壓葉片泵;彈流潤(rùn)滑;表面粗糙度簡(jiǎn)介在這項(xiàng)研究中,對(duì)于復(fù)雜的摩擦系統(tǒng)摩擦計(jì)的發(fā)展的一種新的方法的初步結(jié)果被提出來了。這個(gè)基本概念涉及到一個(gè)在實(shí)驗(yàn)的相互影響的過程中的的磨損計(jì)算的數(shù)學(xué)算法的起源,它可用于預(yù)測(cè)的摩擦磨損性能系統(tǒng)的力學(xué)模型可以模擬互動(dòng)的過程推導(dǎo)。這樣,一個(gè)額外的設(shè)計(jì)工具,實(shí)現(xiàn)了模型和原系統(tǒng)的磨損率的相關(guān)性創(chuàng)建。調(diào)查是執(zhí)行了用于判斷按照美國ASTM2882/DIN51389D型液壓流體的磨損特性威格士葉片泵V104的標(biāo)準(zhǔn)方法。在第一個(gè)步驟,一個(gè)以磨料和粘結(jié)磨損現(xiàn)象的描述剪能量假說為基礎(chǔ),包括隨機(jī)粗糙表面接觸模型的數(shù)學(xué)理論,是適應(yīng)了現(xiàn)實(shí)的葉片泵摩擦磨損,延長(zhǎng)了部分問題彈流潤(rùn)滑和相應(yīng)的實(shí)驗(yàn)驗(yàn)證。這項(xiàng)研究的一個(gè)部分是專門用來對(duì)葉片泵的磨損行為的數(shù)學(xué)模型,并由此產(chǎn)生的算法驗(yàn)證;實(shí)驗(yàn)?zāi)p調(diào)查代表了B部分的焦點(diǎn),這些都是與計(jì)算方法和在A部分所得結(jié)果進(jìn)行比較2.分析部落接觸威格士葉片泵V104C是一個(gè)每轉(zhuǎn)流量不變的泵。系統(tǒng)壓力導(dǎo)致了在轉(zhuǎn)子槽12個(gè)葉片的底部來封住由每一個(gè)葉片環(huán)槽盒和葉片的線接觸和環(huán)的內(nèi)部彎曲組成的單元。同時(shí),所有其他的不同的和定期交變的流體壓力葉片面也都被強(qiáng)調(diào)了。一個(gè)在泵慣性力作用的所有準(zhǔn)靜態(tài)建模,考慮到環(huán)內(nèi)曲率,和切線曲率和裝載假設(shè)相關(guān)的葉片旋轉(zhuǎn)運(yùn)動(dòng)在文獻(xiàn)中有描述,從接觸力F的特征圖上,作為轉(zhuǎn)角度的功能可以得到,這由每次運(yùn)行和系統(tǒng)壓力所使用的葉片幾何形狀而定。由此可見,環(huán)內(nèi)彎曲可分為葉片環(huán)摩擦接觸(圖2)這與上環(huán)的磨損測(cè)量吻合分為四種不同的負(fù)荷條件區(qū):在最大接觸面積部分(第二區(qū)),最高的線性磨損可以發(fā)現(xiàn)[2,3](見B部分)3.?dāng)?shù)學(xué)建模3.1.磨損計(jì)算基本關(guān)系葉片和環(huán)形顯示聯(lián)合磨料和粘結(jié)磨損現(xiàn)象(圖3)。預(yù)測(cè)磨損計(jì)算現(xiàn)象的理論的基本概念在文獻(xiàn)中有描述?!?-6】。從磨損是由在具有相對(duì)運(yùn)動(dòng)的接觸表面的高剪切效應(yīng)引起的這個(gè)假設(shè)開始,基本方程如下:(1)在靜態(tài)磨損狀況中的線性方程組的磨損強(qiáng)度I可以得到,,其中包含具體的剪能量密度,可作為材料常數(shù)解釋,和真正的A區(qū)粗糙的接觸發(fā)生型剪切,為了確定這個(gè)實(shí)際的接觸面積,作為二維的基礎(chǔ)粗糙表面的描述根據(jù)文獻(xiàn)中的高斯領(lǐng)域。[7]是包含在建模。因此,隱函數(shù)關(guān)系被發(fā)現(xiàn),它可以用來計(jì)算式中的表面比。(1)從赫茲壓力作用的研究摩擦接觸,由一個(gè)復(fù)雜的迭代過程每年在文獻(xiàn)中描述無潤(rùn)滑接觸。[6,8]。對(duì)混凝土結(jié)構(gòu)的函數(shù)F和c取決于身體的接觸(滑動(dòng),滾動(dòng))的相對(duì)運(yùn)動(dòng)。參數(shù):u=通過它光譜表示了表面粗糙度的特性,也可以由表面的輪廓決定,塑性指數(shù)是彈性和塑性比例的量度。3.2擴(kuò)展到潤(rùn)滑接觸這個(gè)算法由摩擦計(jì)算的基本關(guān)系被成功應(yīng)用于無潤(rùn)滑摩擦學(xué)系統(tǒng)引出[8]。對(duì)于涉及數(shù)學(xué)模型中的潤(rùn)滑的第一概念在文獻(xiàn)中被開發(fā)。[8].他們是基于彈流潤(rùn)滑的經(jīng)典理論,以粗擦的微接觸的應(yīng)用,忽視了也有一個(gè)微膜隔開了這個(gè)連接機(jī)構(gòu)在微接觸的部分潤(rùn)滑情況下被打斷這個(gè)事實(shí)。因此用它們來做的磨損問題的實(shí)際計(jì)算不理想。他們?cè)谶@里延伸,包括在數(shù)學(xué)模型的以下假設(shè)。潤(rùn)滑導(dǎo)致了通過平均厚度為U的微膠卷的接觸機(jī)構(gòu)的分離,它可以依據(jù)通過(10)的表面粗糙度表示(3)其中u是根據(jù)兩個(gè)非常光滑機(jī)構(gòu)之間經(jīng)典的彈流理論的平均膜厚,可以通過[11]的風(fēng)向標(biāo)和環(huán)的線接觸決定(4)在部分位置的情況下,微膜在粗接觸時(shí)被中斷。一個(gè)塑料微接觸被解釋為純固態(tài)接觸,而對(duì)于一個(gè)彈性接觸表面粗糙度是通過微潤(rùn)滑膜疊加的。由于作為球型壓頭的粗糙的造型,微縮膠片的厚度可以由使用的球平面接觸彈流潤(rùn)滑理論確定,代表了隨機(jī)滑數(shù)模型。[8]

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論