2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年內(nèi)蒙古體育職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.2.下列各量:①密度

②浮力

③風速

④溫度,其中是向量的個數(shù)有()個.A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時具有大小和方向兩個要素才是向量,在所給的四個量中,密度只有大小,浮力既有大小又有方向,風速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個數(shù)是2個,故選C.3.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設表中有一個模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.4.已知均為單位向量,且=,則,的夾角為()

A.

B.

C.

D.答案:C5.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:56.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.7.在極坐標系中,圓ρ=2cosθ與方程θ=(ρ>0)所表示的圖形的交點的極坐標是(

A.(1,1)

B.(1,)

C.(,)

D.(,)答案:C8.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B9.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運算性質(zhì):x10÷x5=x5故為:x510.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,11.已知點A(1,0,-3)和向量AB=(-1,-2,0),則點B的坐標為______.答案:設B(x,y,z),根據(jù)向量的坐標運算,AB=(x,y,z)

-

(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).12.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是

______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.13.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()

A.A88

B.A55A44

C.A44A44

D.A85答案:B14.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A15.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1216.函數(shù)f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,當x∈[-2,2]時,求f(x)的最值,并說明當f(x)取最值時的x的值;

(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當x=-2時,fmax(x)=f(-2)=11當x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.17.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個式中正確的是()

A.①②

B.②③

C.①④

D.②④答案:C18.圓x2+y2-4x=0在點P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D19.已知點O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A20.若=(2,-3,1),=(2,0,3),=(0,2,2),則?(+)=()

A.4

B.15

C.7

D.3答案:D21.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()

A.4

B.

C.

D.答案:D22.設向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.23.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想數(shù)列{an}的通項公式;

(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當n=1時顯然成立.假設當n=k(k≥1)時成立,即ak=2k+1則當n=k+1時,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.24.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內(nèi)運動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點P在平面α內(nèi)運動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.25.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數(shù)為何()

A.50°

B.60°

C.100°

D.120°

答案:C26.已知一種材料的最佳加入量在l000g到2000g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:1618或138227.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.28.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域為{2,3,4,5}.29.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:330.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.31.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是

A.

B.

C.

D.答案:A32.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?

(2)假設該“浮球”的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.33.在市場上供應的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個相互獨立事件同時發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66534.點M的直角坐標為(,1,-2),則它的柱坐標為()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C35.有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計,大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個,∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B36.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個焦點,則雙曲線的方程為()

A.

B.

C.

D.答案:B37.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件是從這個圓上隨機的取一個點,對應的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點,根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1638.將兩個數(shù)a=8,b=17交換,使a=17,b=8,下面語句正確一組是()

A.a(chǎn)=bb=a

B.c=b

b=a

a=c

C.b=aa=b

D.a(chǎn)=cc=bb=a答案:B39.函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],當a變動時,函數(shù)b=g(a)的圖象可以是()A.

B.

C.

D.

答案:根據(jù)選項可知a≤0a變動時,函數(shù)y=2|x|的定義域為[a,b],值域為[1,16],∴2|b|=16,b=4故選B.40.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內(nèi)的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當x=2kπ+π2時,函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號為③故為③41.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).42.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.

(Ⅰ)求證:AC是△BDE的外接圓的切線;

(Ⅱ)若AD=23,AE=6,求EC的長.答案:證明:(Ⅰ)取BD的中點O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.

…(5分)(Ⅱ)設⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)43.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個虛根為-1-5±10-25i4,-1+5±10+25i4中的一個故為:-1-5+10-25i4.44.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.45.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].46.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.47.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

①若K2的觀測值滿足K2≥6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺??;

②從獨立性檢驗可知有99%的把握認為吸煙與患病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病;

③從統(tǒng)計量中得知有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤.

A.①

B.①③

C.③

D.②答案:C48.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D49.當x∈N+時,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.50.已知A、B、C三點共線,A分的比為λ=-,A,B的縱坐標分別為2,5,則點C的縱坐標為()

A.-10

B.6

C.8

D.10答案:D第2卷一.綜合題(共50題)1.如圖,⊙O是Rt△ABC的外接圓,點O在AB上,BD⊥AB,點B是垂足,OD∥AC,連接CD.

求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)2.過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當切線的斜率存在,設切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當切線的斜率不存在時,直線為:x=3,滿足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.3.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.4.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.5.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C6.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x

(x≥0)有相同圖象時,這兩個函數(shù)應是同一個函數(shù).A中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x

(x≥0)具有相同的定義域、值域、對應關(guān)系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x

(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x

(x≥0)是同一個函數(shù),具有相同的圖象,故選B.7.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()

A.2

B.

C.4

D.

答案:C8.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,則全班學生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:29.若隨機變量X~B(5,12),那么P(X≤1)=______.答案:P(X≤1)=C06(12)0(12)6+C16(12)1(12)5=316故為:31610.設p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B11.過點A(0,2),且與拋物線C:y2=6x只有一個公共點的直線l有()條.A.1B.2C.3D.4答案:∵點A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,故選C.12.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C13.點P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D14.如圖給出的是計算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內(nèi)應填入i=______.答案:∵該程序的功能是計算1+13+15+…+12013的值,最后一次進入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應該填的語句是:i=i+2.故為:i+2.15.附加題(必做題)

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.

(1)設AD=λAB,異面直線AC1與CD所成角的余弦值為925,求λ的值;

(2)若點D是AB的中點,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分別為x,y,z軸建立如圖所示空間直角坐標,因為AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因為AD=λAB,所以點D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因為異面直線AC1與CD所成角的余弦值為925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因為

D是AB的中點,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量

n1=(1,0,0),設平面DB1C的一個法向量n2=(x0,y0,z0),則n1,n2的夾角(或其補角)的大小就是二面角D-CB1-B的大小,由n2?CD=0n2?CB

1=0得32x0+2y0=04y0+4z0=0令x0=4,則y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1?n2|n1|?|n2|=434=23417.所以二面角D-B1C-B的余弦值為23417.

…(10分)16.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標為

______.答案:設C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)17.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.18.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點分別在l1,l2,l3上,則△ABC的邊長是______.答案:如圖,過A,C作AE,CF垂直于L2,點E,F(xiàn)是垂足,將Rt△BCF繞點B逆時針旋轉(zhuǎn)60°至Rt△BAD處,延長DA交L2于點G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221319.過點A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當直線過坐標原點時,方程為y=4x,符合題意;當直線不過原點時,設直線方程為x+y=a,代入A的坐標得a=1+4=5.直線方程為x+y=5.所以過點A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.20.已知拋物線和雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標原點,則雙曲線的標準方程是______.答案:設拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點為F(1,0)由題意知雙曲線的焦點為F1(-1,0),F(xiàn)2(1,0)∴c=1對于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.21.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.22.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:523.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對稱,因此a+b=1當直線線y=y0向上平移時,經(jīng)過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)24.閱讀下面的程序框圖,該程序運行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.25.已知三角形ABC的一個頂點A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0

求得x=3y=1,故點B的坐標為(3,1).設點A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對稱點為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0

求得a=1b=2,故點M(1,2),由兩點式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點C的坐標為(2,52),由此可得得AC的方程為x=2.26.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標系中,設直線2x-y+1=0在矩陣MN對應的變換作用下得到曲線F,求曲線F的方程.答案:由題設得MN=01100-111=100-1.…(3分)設(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)27.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b28.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(

A.

B.

C.

D.答案:B29.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2230.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=831.如圖算法輸出的結(jié)果是______.答案:當I=1時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當I=4時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當I=7時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當I=10時,滿足循環(huán)的條件,進而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當I=13時,不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:1632.下圖是由A、B、C、D中的哪個平面圖旋轉(zhuǎn)而得到的(

)答案:A33.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C34.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.35.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.36.設隨機事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.37.若拋物線y2=4x上一點P到其焦點的距離為3,則點P的橫坐標等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.38.在極坐標系中,曲線ρ=4cosθ圍成的圖形面積為()

A.π

B.4

C.4π

D.16答案:C39.有一批機器,編號為1,2,3,…,112,為調(diào)查機器的質(zhì)量問題,打算抽取10臺,問此樣本若采用簡單的隨機抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號001,002,112…用抽簽法做112個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取10次,就得到一個容量為10的樣本.40.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:2541.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()

A.大前提錯導致結(jié)論錯

B.小前提錯導致結(jié)論錯

C.推理形式錯導致結(jié)論錯

D.大前提和小前提錯都導致結(jié)論錯答案:A42.設向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:243.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48344.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C45.一圓形紙片的圓心為O點,Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當點A運動時點P的軌跡是______.

①圓

②雙曲線

③拋物線

④橢圓

⑤線段

⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點P到兩個定點O、Q的距離之和等于定長R(R>|OQ|),由橢圓的定義可得,點P的軌跡為橢圓,故為④.46.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}47.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2248.不等式﹣2x+1>0的解集是(

).答案:{x|x<}49.方程cos2x=x的實根的個數(shù)為

______個.答案:cos2x=x的實根即函數(shù)y=cos2x與y=x的圖象交點的橫坐標,故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).如圖在同一坐標系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應該填

1.50.選修4-4:坐標系與參數(shù)方程

已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×2第3卷一.綜合題(共50題)1.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現(xiàn)6點的概率是,共擲100次至少一次出現(xiàn)全為6點的概率是.2.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因為四邊形的內(nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.3.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D4.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°5.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:166.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.7.已知正三角形ABC的邊長為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.8.設一次試驗成功的概率為p,進行100次獨立重復試驗,當p=______時,成功次數(shù)的標準差的值最大,其最大值為______.答案:由獨立重復試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;59.某學校準備調(diào)查高三年級學生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學生會的同學隨機對24名同學進行調(diào)查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學生會的同學隨機對24名同學進行調(diào)查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調(diào)查,是系統(tǒng)抽樣,故選D10.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C11.天氣預報說,在今后的三天中每一天下雨的概率均為40%,用隨機模擬的方法進行試驗,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計算器中的隨機函數(shù)產(chǎn)生0~9之間隨機整數(shù)的20組如下:

907966191925271932812458569683

431257393027556488730113537989

通過以上隨機模擬的數(shù)據(jù)可知三天中恰有兩天下雨的概率近似為(

)。答案:0.2512.已知某試驗范圍為[10,90],若用分數(shù)法進行4次優(yōu)選試驗,則第二次試點可以是(

)。答案:40或60(不唯一)13.設空間兩個不同的單位向量

a=(x1,y1,0),

b=(x2,y2,0)與向量

c=(1,1,1)的夾角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大小.答案:(1)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°14.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:415.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C16.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.17.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(

A.7

B.

C.4

D.12答案:B18.甲、乙兩人進行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D19.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2320.已知點M的極坐標為,下列所給四個坐標中能表示點M的坐標是()

A.

B.

C.

D.答案:D21.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當k=3時兩條直線平行,當k≠3時有2=-24-k≠3

所以

k=5故為:3或5.22.某農(nóng)科所種植的甲、乙兩種水稻,連續(xù)六年在面積相等的兩塊稻田中作對比試驗,試驗得出平均產(chǎn)量==415㎏,方差是=794,=958,那么這兩個水稻品種中產(chǎn)量比較穩(wěn)定的是()

A.甲

B.乙

C.甲、乙一樣穩(wěn)定

D.無法確定答案:A23.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(

)

A.

B.

C.

D.

答案:C24.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點,D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.25.如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p、q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個;

②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個;

③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是()A.0B.1C.2D.3答案:①正確,此點為點O;②不正確,注意到p,q為常數(shù),由p,q中必有一個為零,另一個非零,從而可知有且僅有4個點,這兩點在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個交點為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點;故選C.26.求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).27.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.28.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm29.設P點在x軸上,Q點在y軸上,PQ的中點是M(-1,2),則|PQ|等于______.答案:設P(a,0),Q(0,b),∵PQ的中點是M(-1,2),∴由中點坐標公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2530.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B31.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.32.已知雙曲線的a=5,c=7,則該雙曲線的標準方程為()

A.-=1

B.-=1

C.-=1或-=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論