2023屆福建省福州十中學(xué)市級名校十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2023屆福建省福州十中學(xué)市級名校十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2023屆福建省福州十中學(xué)市級名校十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2023屆福建省福州十中學(xué)市級名校十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2023屆福建省福州十中學(xué)市級名校十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π2.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.53.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或24.某市初中學(xué)業(yè)水平實驗操作考試,要求每名學(xué)生從物理,化學(xué)、生物三個學(xué)科中隨機抽取一科參加測試,小華和小強都抽到物理學(xué)科的概率是()A. B. C. D.5.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定6.五個新籃球的質(zhì)量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數(shù)表示超過標準質(zhì)量的克數(shù),負數(shù)表示不足標準質(zhì)量的克數(shù).僅從輕重的角度看,最接近標準的籃球的質(zhì)量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+57.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點 B.重心 C.內(nèi)心 D.外心8.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.49.如圖,將△ABC繞點C順時針旋轉(zhuǎn),點B的對應(yīng)點為點E,點A的對應(yīng)點為點D,當(dāng)點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.10.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.411.點A為數(shù)軸上表示-2的動點,當(dāng)點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是()A.1B.-6C.2或-6D.不同于以上答案12.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算的結(jié)果是____.14.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.15.如圖,角α的一邊在x軸上,另一邊為射線OP,點P(2,2),則tanα=_____.16.圓錐底面圓的半徑為3,高為4,它的側(cè)面積等于_____(結(jié)果保留π).17.計算:﹣|﹣2|+()﹣1=_____.18.如果m,n互為相反數(shù),那么|m+n﹣2016|=___________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)現(xiàn)在,某商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?小張按合算的方案,把這臺冰箱買下,如果某商場還能盈利25%,這臺冰箱的進價是多少元?20.(6分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?21.(6分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.22.(8分)某公司對用戶滿意度進行問卷調(diào)查,將連續(xù)6天內(nèi)每天收回的問卷數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數(shù)是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統(tǒng)一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發(fā)放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?23.(8分)小明對,,,四個中小型超市的女工人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現(xiàn)在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學(xué)認為是,乙同學(xué)認為不是.你認為誰說的對,并說明理由.24.(10分)某校學(xué)生會準備調(diào)查六年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).(1)確定調(diào)查方式時,甲同學(xué)說:“我到六年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機調(diào)查部分同學(xué)”;丙同學(xué)說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學(xué)”.請指出哪位同學(xué)的調(diào)查方式最合理.類別頻數(shù)(人數(shù))頻率武術(shù)類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統(tǒng)計圖中,器樂類所對應(yīng)扇形的圓心角的度數(shù)是_____;③若該校六年級有學(xué)生560人,請你估計大約有多少學(xué)生參加武術(shù)類校本課程.25.(10分)已知關(guān)于x的一元二次方程.求證:方程有兩個不相等的實數(shù)根;如果方程的兩實根為,,且,求m的值.26.(12分)已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應(yīng)的數(shù),并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.27.(12分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.2、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結(jié)合圓周角定理得出相似三角形是解題關(guān)鍵.3、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.4、A【解析】

作出樹狀圖即可解題.【詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學(xué)科的概率是,故選A.【點睛】本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關(guān)鍵.5、C【解析】

首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,

∴點O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.6、B【解析】

求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質(zhì)量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質(zhì)量是-0.6,故選B.【點睛】本題考查了正數(shù)和負數(shù),掌握正數(shù)和負數(shù)的定義以及意義是解題的關(guān)鍵.7、D【解析】

為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點最適當(dāng).故選D.【點睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵.8、B【解析】

圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關(guān)鍵是利用知識點:圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.9、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.10、B【解析】

由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據(jù)“相似三角形對應(yīng)邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質(zhì).靈活運用相似的性質(zhì)可得出解答.11、C【解析】解:∵點A為數(shù)軸上的表示-1的動點,①當(dāng)點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-1-4=-6;②當(dāng)點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為-1+4=1.故選C.點睛:注意數(shù)的大小變化和平移之間的規(guī)律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.12、C【解析】

根據(jù)非負數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】原式=,故答案為.14、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關(guān)計算,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.15、【解析】解:過P作PA⊥x軸于點A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案為.點睛:本題考查了解直角三角形,正切的定義,坐標與圖形的性質(zhì),熟記三角函數(shù)的定義是解題的關(guān)鍵.16、15π【解析】

根據(jù)圓的面積公式、扇形的面積公式計算即可.【詳解】圓錐的母線長==5,,圓錐底面圓的面積=9π圓錐底面圓的周長=2×π×3=6π,即扇形的弧長為6π,∴圓錐的側(cè)面展開圖的面積=×6π×5=15π,【點睛】本題考查的是扇形的面積,熟練掌握扇形和圓的面積公式是解題的關(guān)鍵.17、﹣1【解析】

根據(jù)立方根、絕對值及負整數(shù)指數(shù)冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數(shù)的混合運算,解題的關(guān)鍵是掌握運算法則及運算順序.18、1.【解析】試題分析:先用相反數(shù)的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數(shù),∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數(shù)的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)當(dāng)顧客消費等于1500元時買卡與不買卡花錢相等;當(dāng)顧客消費大于1500元時買卡合算;(2)小張買卡合算,能節(jié)省400元錢;(3)這臺冰箱的進價是2480元.【解析】

(1)設(shè)顧客購買x元金額的商品時,買卡與不買卡花錢相等,根據(jù)花300元買這種卡后,憑卡可在這家商場按標價的8折購物,列出方程,解方程即可;根據(jù)x的值說明在什么情況下購物合算

(2)根據(jù)(1)中所求即可得出怎樣購買合算,以及節(jié)省的錢數(shù);(3)設(shè)進價為y元,根據(jù)售價-進價=利潤,則可得出方程即可.【詳解】解:設(shè)顧客購買x元金額的商品時,買卡與不買卡花錢相等.根據(jù)題意,得300+0.8x=x,解得x=1500,所以當(dāng)顧客消費等于1500元時,買卡與不買卡花錢相等;當(dāng)顧客消費少于1500元時,300+0.8xx不買卡合算;當(dāng)顧客消費大于1500元時,300+0.8xx買卡合算;(2)小張買卡合算,3500﹣(300+3500×0.8)=400,所以,小張能節(jié)省400元錢;(3)設(shè)進價為y元,根據(jù)題意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:這臺冰箱的進價是2480元.【點睛】此題主要考查了一元一次方程的應(yīng)用,找準等量關(guān)系,正確列出一元一次方程是解題的關(guān)鍵.20、(1)y=﹣x2+2x+3;(2)當(dāng)t=或t=時,△PCQ為直角三角形;(3)當(dāng)t=2時,△ACQ的面積最大,最大值是1.【解析】

(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點A的坐標,根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時;當(dāng)∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當(dāng)∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當(dāng)∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當(dāng)t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當(dāng)t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,銳角三角函數(shù),三角形面積,二次函數(shù)的最值,方程思想以及分類思想的運用.21、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設(shè)圓O的半徑為r,根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質(zhì).22、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數(shù)之比即可得出結(jié)論;(2)由于組距相同,各矩形的高度比即為頻數(shù)的比,可由數(shù)據(jù)總數(shù)=某組的頻數(shù)÷頻率計算;(3)根據(jù)概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設(shè)份數(shù)為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵,∴第6天收回問卷獲獎率高.點睛:本題考查了對頻數(shù)分布直方圖的掌握情況,根據(jù)圖中信息,求出頻率,用來估計概率.用到的知識點為:總體數(shù)目=部分數(shù)目÷相應(yīng)頻率.部分的具體數(shù)目=總體數(shù)目×相應(yīng)頻率.概率=所求情況數(shù)與總情況數(shù)之比.23、(1)32(人),25(人);(2);(3)乙同學(xué),見解析.【解析】

(1)用A超市有女工人數(shù)除以女工人數(shù)占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數(shù),進一步得到四個中小型超市的女工人數(shù)比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數(shù),進一步得到四個中小型超市共有女工人數(shù),再根據(jù)概率的定義即可求解;

(3)先求出D超市有女工人數(shù)、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數(shù)、共有員工多少人,再根據(jù)概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數(shù)的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學(xué).理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)見解析;(2)①a=100,b=0.15;②144°;③140人.【解析】

(1)采用隨機調(diào)查的方式比較合理,隨機調(diào)查的關(guān)鍵是調(diào)查的隨機性,這樣才合理;

(2)①用喜歡書畫類的頻數(shù)除以喜歡書畫類的頻率即可求得a值,用喜歡棋牌類的人數(shù)除以總?cè)藬?shù)即可求得b值.②求得器樂類的頻率乘以360°即可.③用總?cè)藬?shù)乘以喜歡武術(shù)類的頻率即可求喜歡武術(shù)的總?cè)藬?shù).【詳解】(1)∵調(diào)查的人數(shù)較多,范圍較大,∴應(yīng)當(dāng)采用隨機抽樣調(diào)查,∵到六年級每個班隨機調(diào)查一定數(shù)量的同學(xué)相對比較全面,∴丙同學(xué)的說法最合理.(2)①∵喜歡書畫類的有20人,頻率為0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜歡器樂類的頻率為:1﹣0.25﹣0.20﹣0.15=0.4,∴喜歡器樂類所對應(yīng)的扇形的圓心角的度數(shù)為:360×0.4=144°;③喜歡武術(shù)類的人數(shù)為:560×0.25=140人.【點睛】本題考查了用樣本估計總體和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.25、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個不相等的實數(shù)根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據(jù)根與系數(shù)的關(guān)系可以得到關(guān)于m的方程,從而可以求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論