版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)過(guò)拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為,則()A. B. C. D.2.已知集合,集合,則()A. B. C. D.3.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.04.2019年10月1日,為了慶祝中華人民共和國(guó)成立70周年,小明、小紅、小金三人以國(guó)慶為主題各自獨(dú)立完成一幅十字繡贈(zèng)送給當(dāng)?shù)氐拇逦瘯?huì),這三幅十字繡分別命名為“鴻福齊天”、“國(guó)富民強(qiáng)”、“興國(guó)之路”,為了弄清“國(guó)富民強(qiáng)”這一作品是誰(shuí)制作的,村支書(shū)對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小明說(shuō):“鴻福齊天”是我制作的;小紅說(shuō):“國(guó)富民強(qiáng)”不是小明制作的,就是我制作的;小金說(shuō):“興國(guó)之路”不是我制作的,若三人的說(shuō)法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明5.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.6.若的內(nèi)角滿足,則的值為()A. B. C. D.7.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿足,則等于()A.2 B. C. D.8.設(shè)集合,則()A. B.C. D.9.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)必考科目,“1”指在物理、歷史兩門(mén)科目中必選一門(mén),“2”指在化學(xué)、生物、政治、地理以及除了必選一門(mén)以外的歷史或物理這五門(mén)學(xué)科中任意選擇兩門(mén)學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種10.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.11.已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),以為直徑的圓過(guò)且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點(diǎn),A為橢圓Г的上頂點(diǎn),延長(zhǎng)AF2交橢圓Г于點(diǎn)B,若為等腰三角形,則橢圓Г的離心率為_(kāi)__________.14.在中,,,,則__________.15.在疫情防控過(guò)程中,某醫(yī)院一次性收治患者127人.在醫(yī)護(hù)人員的精心治療下,第15天開(kāi)始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開(kāi)始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_(kāi)______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點(diǎn)到平面的距離.18.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明19.(12分)已知.(Ⅰ)當(dāng)時(shí),解不等式;(Ⅱ)若的最小值為1,求的最小值.20.(12分)某單位準(zhǔn)備購(gòu)買(mǎi)三臺(tái)設(shè)備,型號(hào)分別為已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購(gòu)買(mǎi)設(shè)備的同時(shí)購(gòu)買(mǎi)該易耗品,每件易耗品的價(jià)格為100元,也可以在設(shè)備使用過(guò)程中,隨時(shí)單獨(dú)購(gòu)買(mǎi)易耗品,每件易耗品的價(jià)格為200元.為了決策在購(gòu)買(mǎi)設(shè)備時(shí)應(yīng)購(gòu)買(mǎi)的易耗品的件數(shù).該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)査每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)678型號(hào)A30300頻數(shù)型號(hào)B203010型號(hào)C04515將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.(1)求該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過(guò)21件的概率;(2)以該單位一個(gè)月購(gòu)買(mǎi)易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購(gòu)買(mǎi)設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)20件還是21件易耗品?21.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.22.(10分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
畫(huà)出圖形,將三角形面積比轉(zhuǎn)為線段長(zhǎng)度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫(xiě)出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長(zhǎng)的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯(cuò)的綜合題.2、C【解析】
求出集合的等價(jià)條件,利用交集的定義進(jìn)行求解即可.【詳解】解:∵,,∴,故選:C.【點(diǎn)睛】本題主要考查了對(duì)數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題.3、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.4、B【解析】
將三個(gè)人制作的所有情況列舉出來(lái),再一一論證.【詳解】依題意,三個(gè)人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國(guó)富民強(qiáng)小紅小金小金小明小紅小明興國(guó)之路小金小紅小明小金小明小紅若小明的說(shuō)法正確,則均不滿足;若小紅的說(shuō)法正確,則4滿足;若小金的說(shuō)法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點(diǎn)睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.5、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.6、A【解析】
由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因?yàn)?,所?故選:A.【點(diǎn)睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡(jiǎn)、求值問(wèn)題,著重考查了推理與計(jì)算能力.7、D【解析】
選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.8、B【解析】
直接進(jìn)行集合的并集、交集的運(yùn)算即可.【詳解】解:;∴.故選:B.【點(diǎn)睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運(yùn)算,是基礎(chǔ)題.9、C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門(mén);物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門(mén),則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.10、C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】
由雙曲線的對(duì)稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的對(duì)稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.12、A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)?,恒成立,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識(shí)別和判斷,利用函數(shù)值的符號(hào)以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得等腰三角形的兩條相等的邊,設(shè),由題可得的長(zhǎng),在三角形中,三角形中由余弦定理可得的值相等,可得的關(guān)系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設(shè)|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設(shè)∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【點(diǎn)睛】此題考查橢圓的定義及余弦定理的簡(jiǎn)單應(yīng)用,屬于中檔題.14、1【解析】
由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點(diǎn)睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15、161【解析】
由題意可知出院人數(shù)構(gòu)成一個(gè)首項(xiàng)為1,公比為2的等比數(shù)列,由此可求結(jié)果.【詳解】某醫(yī)院一次性收治患者127人.第15天開(kāi)始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開(kāi)始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開(kāi)始,每天出院人數(shù)構(gòu)成以1為首項(xiàng),2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點(diǎn)睛】本題主要考查了等比數(shù)列在實(shí)際問(wèn)題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題.16、【解析】
利用三視圖判斷幾何體的形狀,然后通過(guò)三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長(zhǎng)為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對(duì)應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)建立空間坐標(biāo)系,通過(guò)求向量與向量的夾角,轉(zhuǎn)化為異面直線與直線所成的角的大小;(2)先求出面的一個(gè)法向量,再用點(diǎn)到面的距離公式算出即可.【詳解】以為原點(diǎn),所在直線分別為軸建系,設(shè)所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因?yàn)椋?,設(shè)是面的一個(gè)法向量,所以有即,令,,故,又,所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查向量法求異面直線所成角的大小和點(diǎn)到面的距離,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運(yùn)算能力.18、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)?,且,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等主要方法有兩個(gè),一是比較簡(jiǎn)單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點(diǎn),結(jié)合已解答的問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)當(dāng)時(shí),令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對(duì)值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點(diǎn)橫坐標(biāo)為2,由對(duì)稱性知,點(diǎn)橫坐標(biāo)為﹣2,因此不等式的解集為.(Ⅱ)..取等號(hào)的條件為,即,聯(lián)立得因此的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式、基本不等式,屬于中檔題20、(1)(2)應(yīng)該購(gòu)買(mǎi)21件易耗品【解析】
(1)由統(tǒng)計(jì)表中數(shù)據(jù)可得型號(hào)分別為在一個(gè)月使用易耗品的件數(shù)為6,7,8時(shí)的概率,設(shè)該單位三臺(tái)設(shè)備一個(gè)月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨(dú)立事件概率公式進(jìn)而求解即可;(2)由題可得X所有可能的取值為,即可求得對(duì)應(yīng)的概率,再分別討論該單位在購(gòu)買(mǎi)設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)20件易耗品和21件易耗品時(shí)總費(fèi)用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為6和7的頻率均為;B型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號(hào)的設(shè)備一個(gè)月使用易耗品的件數(shù)為7和8的頻率分別為;設(shè)該單位一個(gè)月中三臺(tái)設(shè)備使用易耗品的件數(shù)分別為,則,,,設(shè)該單位三臺(tái)設(shè)備一個(gè)月中使用易耗品的件數(shù)總數(shù)為X,則而,,故,即該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過(guò)21件的概率為.(2)以題意知
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東經(jīng)貿(mào)職業(yè)學(xué)院《作物生理生態(tài)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東交通職業(yè)學(xué)院《外國(guó)音樂(lè)史2》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東交通學(xué)院《軟件建?!?023-2024學(xué)年第一學(xué)期期末試卷
- 2024年高性能鐵氧體磁體合作協(xié)議書(shū)
- 2024年鉬粉系列合作協(xié)議書(shū)
- 建筑工程課程設(shè)計(jì)
- 早教揉壓跑道課程設(shè)計(jì)
- 《偶像劇男配角受眾接受心理研究》
- 《新生兒呼吸窘迫綜合征發(fā)病危險(xiǎn)因素研究》
- 《凍融和碳化作用下保溫混凝土力學(xué)性能試驗(yàn)研究》
- 2024版建筑工程設(shè)計(jì)居間協(xié)議3篇
- 2025屆新高考語(yǔ)文必背74篇古詩(shī)詞譯文(解析版)
- 動(dòng)畫(huà)制作員職業(yè)技能大賽考試題庫(kù)(濃縮500題)
- 湖北省十一校2024-2025學(xué)年高三上學(xué)期第一次聯(lián)考物理試卷 含解析
- 12《富起來(lái)到強(qiáng)起來(lái)》第一課時(shí)(說(shuō)課稿)統(tǒng)編版道德與法治五年級(jí)下冊(cè)
- 問(wèn)題解決策略:歸納課件2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)
- 【初中道法】擁有積極的人生態(tài)度(課件)-2024-2025學(xué)年七年級(jí)道德與法治上冊(cè)(統(tǒng)編版2024)
- 年終總結(jié)安全類
- 銷售團(tuán)隊(duì)員工轉(zhuǎn)正考核方案
- 傭金返還合同范例版
- 2023年民航湖北空管分局招聘考試真題
評(píng)論
0/150
提交評(píng)論