版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C. D.2.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.4.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.5.一個(gè)超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.66.已知,,則()A. B. C.3 D.47.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.9.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或10.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.11.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿足,則等于()A.2 B. C. D.12.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生二、填空題:本題共4小題,每小題5分,共20分。13.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.14.已知函數(shù)與的圖象上存在關(guān)于軸對稱的點(diǎn),則的取值范圍為_____.15.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為__________.16.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計(jì)該產(chǎn)品的每日生產(chǎn)總成本價(jià)格)(單位:萬元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本(即生產(chǎn)過程中一段時(shí)間的總成本對該段時(shí)間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財(cái)團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.18.(12分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會.摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.19.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.20.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時(shí)可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.3、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.5、A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾?;即?個(gè)這種超級斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.6、A【解析】
根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)椋?,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.7、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.8、D【解析】
由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點(diǎn)睛】本題考查程序框圖.解題可模擬程序運(yùn)行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.9、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號.故“且”是“”的充分不必要條件.選C.10、C【解析】
設(shè)公差為,則由題意可得,解得,可得.令
,可得
當(dāng)時(shí),,當(dāng)時(shí),,由此可得數(shù)列前項(xiàng)和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,
則,解得
,.
令
,可得,故當(dāng)時(shí),,當(dāng)時(shí),,
故數(shù)列前項(xiàng)和中最小的是.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.11、D【解析】
選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.12、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【點(diǎn)睛】本題主要考查利用排列知識解決實(shí)際問題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識的能力,屬于基礎(chǔ)題.14、【解析】
兩函數(shù)圖象上存在關(guān)于軸對稱的點(diǎn)的等價(jià)命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對稱的點(diǎn),則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域?yàn)?;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點(diǎn)睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點(diǎn)問題的拓展.由于函數(shù)的零點(diǎn)就是方程的根,在研究方程的有關(guān)問題時(shí),可以將方程問題轉(zhuǎn)化為函數(shù)問題解決.此類問題的切入點(diǎn)是借助函數(shù)的零點(diǎn),結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.15、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問題轉(zhuǎn)化為函數(shù)的最值問題.16、【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時(shí)滿足題意,解得或所以答案為【點(diǎn)睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時(shí)的分類討論化簡三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)證明見解析.【解析】
(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.(3)利用(2)的結(jié)論,判斷出,由此結(jié)合對數(shù)運(yùn)算,證得.【詳解】(1)因?yàn)樗援?dāng)時(shí),(2)要證,只需證,即證,設(shè)則所以在上單調(diào)遞減,所以所以,即;(3)因?yàn)橛钟桑?)知,當(dāng)時(shí),所以所以所以【點(diǎn)睛】本小題主要考查導(dǎo)數(shù)的計(jì)算,考查利用導(dǎo)數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.18、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎(jiǎng)停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個(gè)值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎(jiǎng)停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎(jiǎng)停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.19、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時(shí),即,則由,,得,則,此時(shí),的面積為;②當(dāng)時(shí),則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積的計(jì)算,涉及余弦定理解三角形的應(yīng)用,考查計(jì)算能力,屬于中等題.20、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,則,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,則,此時(shí),函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時(shí),即當(dāng)時(shí),,由,得,此時(shí),函數(shù)為增函數(shù);由,得,此時(shí),函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時(shí),即時(shí),.不妨設(shè),其中,令,則或.(i)當(dāng)時(shí),,當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù).此時(shí),而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時(shí),,所以,.,符合題意;②當(dāng)時(shí),,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時(shí),同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時(shí),則,解得.綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,正確求導(dǎo)和分類討論是關(guān)鍵,屬于難題.21、(1)見解析(2)【解析】
(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面.(2)取中點(diǎn)為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛州職業(yè)技術(shù)學(xué)院《體育跆拳道》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)科技學(xué)院《安裝工程造價(jià)軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 《色彩的感染力》課件
- 甘肅中醫(yī)藥大學(xué)《特效短片制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 《沙宣公關(guān)分析》課件
- 七年級語文上冊第二單元體驗(yàn)親情6散步高效教案新人教版
- 七年級道德與法治上冊第四單元生命的思考第十課綻放生命之花第二框活出生命的精彩教案新人教版
- 三年級數(shù)學(xué)上冊第5單元四則混合運(yùn)算一5.3簡單的三步混合運(yùn)算課時(shí)練冀教版
- 《獻(xiàn)給我的朋友》課件
- 綠色醫(yī)院低碳運(yùn)維促節(jié)能降耗課件
- 審計(jì)常用法規(guī)培訓(xùn)課件
- 健康指南知己知彼了解你的身體質(zhì)量指數(shù)BMI
- 主題二:擁軍優(yōu)屬心連心 課件 2023-2024學(xué)年廣州版初中勞動(dòng)技術(shù)九年級下冊
- 腎積水護(hù)理查房
- 海洋技術(shù)與海洋裝備發(fā)展
- 智慧火電廠整體解決方案
- 五年級上冊小數(shù)乘法豎式計(jì)算練習(xí)400題及答案
- 電廠鍋爐爐膛煙道內(nèi)部作業(yè)三措兩案
- 收費(fèi)站(所)事故隱患排查清單
- 駕駛證學(xué)法減分(學(xué)法免分)題庫及答案(200題完整版)
- 四川省宜賓市敘州區(qū)2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
評論
0/150
提交評論