2023年重慶高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
2023年重慶高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
2023年重慶高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
2023年重慶高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
2023年重慶高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.2.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.3.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.4.設(shè),則A. B. C. D.5.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.6.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢7.若平面向量,滿足,則的最大值為()A. B. C. D.8.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.9.若函數(shù)在時取得最小值,則()A. B. C. D.10.設(shè)分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.11.已知向量,,則向量在向量上的投影是()A. B. C. D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)()的圖象與直線相切,則______.14.設(shè)為偶函數(shù),且當(dāng)時,;當(dāng)時,.關(guān)于函數(shù)的零點,有下列三個命題:①當(dāng)時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.16.函數(shù)的定義域是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點,且△ACD的面積為,求sin∠ADB.18.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.19.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當(dāng)二面角的余弦值為時,求直線與平面所成的角.21.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當(dāng)時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨??;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.2.B【解析】

求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點坐標(biāo)為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關(guān)的幾何性質(zhì),考查運算求解能力,屬于中檔題.3.B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.4.C【解析】分析:利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.5.A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.6.D【解析】

采用逐一驗證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎(chǔ)題.7.C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關(guān)鍵點.本題屬中檔題.8.B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.9.D【解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當(dāng),即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.10.C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.11.A【解析】

先利用向量坐標(biāo)運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標(biāo)運算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.12.D【解析】

根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

設(shè)切點由已知可得,即可解得所求.【詳解】設(shè),因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.14.①②③【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當(dāng)時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當(dāng)時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當(dāng)時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.15.【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率16.【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長,根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【點睛】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計算求解能力,屬于中檔題.18.(Ⅰ)證明見解析(Ⅱ)【解析】

(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運算的能力,屬于中檔題.19.(1)(2)答案不唯一具體見解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導(dǎo)后得,對分三種情況進行一級討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時,恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個零點;②當(dāng)時,在R上沒有零點;③當(dāng)時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤?,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當(dāng)時,單調(diào)遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當(dāng)時,函數(shù)沒有零點;當(dāng)或時,函數(shù)恰有一個零點;當(dāng)時,恰有兩個零點.【點睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點等知識,求解切線有關(guān)問題時,一定要明確切點坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點個數(shù),此時如果用到零點存在定理,必需說明在區(qū)間內(nèi)單調(diào)且找到兩個端點值的函數(shù)值相乘小于0,才算完整的解法.20.(1)見解析(2)【解析】

(Ⅰ)取的中點,連結(jié)、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成,著重考查了分析問題和解答問題的能力.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論