版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年內(nèi)蒙古自治區(qū)包頭市普通高校對口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.下列函數(shù)中,是增函數(shù),又是奇函數(shù)的是(〕A.y=
B.y=1/x
C.y=x2
D.y=x1/3
2.函數(shù)y=f(x)存在反函數(shù),若f(2)=-3,則函數(shù)y=f-1(x)的圖像經(jīng)過點(diǎn)()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)
3.若實(shí)數(shù)a,b滿足a+b=2,則3a+3b的最小值是()A.18
B.6
C.
D.
4.函數(shù)y=lg(1-x)(x<0)的反函數(shù)是()A.y=101-x(x<0)
B.y=101-x(x>0)
C.y=1-10x(x<0)
D.y=1-10x(x>0)
5.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購物已經(jīng)逐漸成為消費(fèi)時(shí)尚,為了解消費(fèi)者對網(wǎng)上購物的滿意情況,某公司隨機(jī)對4500名網(wǎng)上購物消費(fèi)者進(jìn)行了調(diào)查(每名消費(fèi)者限選一種情況回答),統(tǒng)計(jì)結(jié)果如表:根據(jù)表中數(shù)據(jù),估計(jì)在網(wǎng)上購物的消費(fèi)者群體中對網(wǎng)上購物“比較滿意”或“滿意”的概率是()A.7/15B.2/5C.11/15D.13/15
6.已知集合,則等于()A.
B.
C.
D.
7.A.10B.5C.2D.12
8.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
9.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
10.A.B.C.
二、填空題(10題)11.如圖是一個(gè)算法流程圖,則輸出S的值是____.
12.已知_____.
13.有一長為16m的籬笆要圍成一個(gè)矩形場地,則矩形場地的最大面積是________m2.
14.
15.
16.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
17.已知正實(shí)數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
18.若集合,則x=_____.
19.某學(xué)校共有師生2400人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個(gè)容量為160的樣本,已知從學(xué)生中抽取的人數(shù)為150,那么該學(xué)校的教師人數(shù)是_______.
20.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
三、計(jì)算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
22.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
23.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
24.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
25.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
四、簡答題(10題)26.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
27.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
28.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
29.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
30.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長,求b的值
31.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
32.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.
33.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由
34.已知拋物線的焦點(diǎn)到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點(diǎn)下的坐標(biāo)。(2)過點(diǎn)P(4,0)的直線交拋物線AB兩點(diǎn),求的值。
35.求過點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
五、解答題(10題)36.
37.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項(xiàng)和S5.
38.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
39.
40.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(diǎn)(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.
41.如圖,在正方體ABCD-A1B1C1D1中,S是B1D1的中點(diǎn),E,F(xiàn),G分別是BC,DC,SC的中點(diǎn),求證:(1)直線EG//平面BDD1B1;(2)平面EFG//平面BDD1B1
42.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過原點(diǎn)O且不平行于坐標(biāo)軸,L與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.
43.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
44.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.(1)求通項(xiàng)公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項(xiàng)和Sn.
45.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
六、單選題(0題)46.橢圓9x2+16y2=144短軸長等于()A.3B.4C.6D.8
參考答案
1.D函數(shù)奇偶性和單調(diào)性的判斷.奇函數(shù)只有B,D,而B不是增函數(shù).
2.A由反函數(shù)定義可知,其圖像過點(diǎn)(-3,2).
3.B不等式求最值.3a+3b≥2
4.D
5.C古典概型的概率公式.由題意,n=4500-200-2100-1000=1200.所以對網(wǎng)上購物“比較滿意”或“滿意”的人數(shù)為1200+2100=3300,由古典概型概率公式可得對網(wǎng)上購物“比較滿意”或“滿意”的概率為3300/4500=11/15.
6.B由函數(shù)的換算性質(zhì)可知,f-1(x)=-1/x.
7.A
8.C同角三角函數(shù)的計(jì)算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
9.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
10.A
11.25程序框圖的運(yùn)算.經(jīng)過第一次循環(huán)得到的結(jié)果為S=1,n=3,過第二次循環(huán)得到的結(jié)果為S=4,72=5,經(jīng)過第三次循環(huán)得到的結(jié)果為S=9,n=7,經(jīng)過第四次循環(huán)得到的結(jié)果為s=16,n=9經(jīng)過第五次循環(huán)得到的結(jié)果為s=25,n=11,此時(shí)不滿足判斷框中的條件輸出s的值為25.故答案為25.
12.
13.16.將實(shí)際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值問題.設(shè)矩形的長為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
14.-5或3
15.2π/3
16.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
17.2基本不等式求最值.由題
18.
,AB為A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
19.150.分層抽樣方法.該校教師人數(shù)為2400×(160-150)/160=150(人).
20.-3或7,
21.
22.
23.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
24.
25.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.
27.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
28.原式=
29.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
30.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
31.
32.∵(1)這條弦與拋物線兩交點(diǎn)
∴
33.(1)(2)∴又∴函數(shù)是偶函數(shù)
34.(1)拋物線焦點(diǎn)F(,0),準(zhǔn)線L:x=-,∴焦點(diǎn)到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點(diǎn)為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴
35.x-7y+19=0或7x+y-17=0
36.
37.(1)由題可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.
38.(1)設(shè)等差數(shù)列{an}的公差為d因?yàn)閍3=-6,a5=0,所以解得a1=-10,d=2所以an=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)術(shù)影響力評估研究-洞察分析
- 網(wǎng)絡(luò)釣魚攻擊防御-洞察分析
- 藝術(shù)批評標(biāo)準(zhǔn)與方法-第1篇-洞察分析
- 藥物過敏反應(yīng)生物標(biāo)志物-洞察分析
- 《腎積水的護(hù)理》課件
- 《證據(jù)法的基本原則》課件
- 2024年柳州鐵路局桂林醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 2024年柳州市工人醫(yī)院分院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 農(nóng)村土葬土地協(xié)議書(2篇)
- 2024年杭州市拱墅中西醫(yī)結(jié)合醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 【全國最火爆的團(tuán)建項(xiàng)目】旱地冰壺(拓展訓(xùn)練服務(wù)綜合供應(yīng)平臺)
- 北京市西城區(qū)2023-2024學(xué)年五年級上學(xué)期期末數(shù)學(xué)試卷
- 工程結(jié)算課件
- CNAS-CL02-A001:2023 醫(yī)學(xué)實(shí)驗(yàn)室質(zhì)量和能力認(rèn)可準(zhǔn)則的應(yīng)用要求
- ??低晿寵C(jī)攝像機(jī)檢測報(bào)告.文檔
- 部編小語一下三單元(《小公雞和小鴨子》《樹和喜鵲》《怎么都快樂》)大單元學(xué)習(xí)任務(wù)群教學(xué)設(shè)計(jì)
- 體檢中心組織架構(gòu)
- 森林撫育投標(biāo)方案
- 中小學(xué)教育中課程資源的開發(fā)與利用
- 大班科學(xué)教案:我和風(fēng)兒做游戲教案及反思
- 園藝治療概念、內(nèi)涵與理論依據(jù)
評論
0/150
提交評論