半角模型綜合應(yīng)用(能力提升)_第1頁
半角模型綜合應(yīng)用(能力提升)_第2頁
半角模型綜合應(yīng)用(能力提升)_第3頁
半角模型綜合應(yīng)用(能力提升)_第4頁
半角模型綜合應(yīng)用(能力提升)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題06半角模型綜合應(yīng)用(能力提升)如圖,點(diǎn)E、F分別在正方形ABCD的邊CD,BC上,且∠EAF=45°,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,連接BD交AF于點(diǎn)M,DE=2,BF=3,則GM=.【答案】2【解答】解:連接GE交AF于點(diǎn)O,∵四邊形ABCD是正方形,∴∠BAD=∠ABF=∠ADE=∠C=90°,AB=AD=BC=DC,AD∥BC,∵∠EAF=45°,∴∠BAF+∠DAE=∠BAD﹣∠EAF=90°﹣45°=45°,由旋轉(zhuǎn)得:AE=AG,∠ABF=∠ADE=90°,BG=DE=2,∠BAG=∠DAE,∴∠BAG+∠BAF=45°,∴∠GAF=∠EAF=45°,∵∠ABF=∠ABG=90°,∴∠GBC=∠ABG+∠ABF=180°,∴點(diǎn)G、B、F三點(diǎn)在同一條直線上,∵BF=3,∴FG=BG+BF=2+3=5,∴△GAF≌△EAF(SAS),∴FG=FE=5,設(shè)正方形ABCD的邊長為x,∴CF=x﹣3,CE=x﹣2,在Rt△ECF中,F(xiàn)C2+EC2=EF2,∴(x﹣3)2+(x﹣2)2=52,∴x=6或x=﹣1(舍去),∴正方形ABCD的邊長為6,在Rt△ABF中,AF===3,∵AD∥BC,∴∠DAM=∠MFB,∠ADM=∠MBF,∴△ADM∽△FBM,∴===2,∴AM=AF=2,在Rt△ADE中,AE===2,∵AG=AE,F(xiàn)G=FE,∴AF是EG的垂直平分線,∴∠AOE=90°,∵∠EAF=45°,∴AE=AO,∴AO=2,∴點(diǎn)M與點(diǎn)O重合,∴EG=2GM,在Rt△ECG中,EC=DC﹣DE=6﹣2=4,GC=BC+GB=6+2=8,∴EG===4,∴GM=2,故答案為:2.2.如圖:已知正方形ABCD,動(dòng)點(diǎn)M、N分別在DC、BC上,且滿足∠MAN=45°,△CMN的周長為2,則△CMN面積的最大值是.【答案】3﹣2【解答】解:∵四邊形ABCD為正方形,∴∠B=∠D=90°,AB=AD,CD=CB;如圖,將△ABN繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)90°得到△ADE,∴AE=AN,DE=BN,∠DAE=∠BAN;∴∠MAE=∠MAD+∠BAN,∵∠MAN=45°,∴∠MAD+∠BAN=90°﹣45°=45°,∴∠MAE=∠MAN;在△MAE與△MAN中,,∴△MAE≌△MAN(SAS),∴ME=MN,∴MD+BN=MN;∴△MCN的周長=CM+CN+MN=CM+ME+CN=CM+DM+CN+BN=CD+CB=2,而CD=CB,∴CD=CB=1;設(shè)DM=x,BN=y(tǒng),△CMN的面積為s,則S==,整理得:x+y﹣xy=1﹣2S①;由勾股定理得:MN2=CM2+CN2,即(x+y)2=(1﹣x)2+(1﹣y)2,整理得:x+y+xy=1②,聯(lián)立①②得:xy=s,x+y=1﹣s,∴x、y為方程z2﹣(1﹣s)z+s=0的兩個(gè)根,∴△≥0,即[﹣(1﹣s)]2﹣4s≥0,解得:s或s(不合題意,舍去),故答案為3﹣2.3.旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且.(1)如圖a,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連結(jié)DF.①∠DAF=;②求證:DF=DE;(2)如圖b,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由.【解答】(1)①解:由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∠EAF=60°,∵∠DAE=α,∠BAC=α=60°,∴∠DAE=×60°=30°,∴∠CAE+∠BAD=∠BAC﹣∠DAE=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°,故答案為:30°;②證明:由①知,AF=AE,∠DAF=∠DAE=30°,∵AB=AC,∴△DAF≌△DAE(SAS),∴DF=DE;(2)解:DE2=BD2+CE2,理由如下:如圖,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連結(jié)DF,∴AF=AE,∠EAF=90°=∠BAC,∴∠BAF=∠CAE,∴△BAF≌△CAE(SAS),∴BF=CE,∠ABF=∠ACE,在Rt△ABC中,∠C=∠ABC=45°,∴∠ABF=45°,∴∠DBF=90°,根據(jù)勾股定理得,DF2=BD2+BF2,∴DF2=BD2+CE2,同(1)②的方法得,DF=DE,∴DE2=BD2+CE2.4.已知∠MBN=60°,等邊△BEF與∠MBN頂點(diǎn)B重合,將等邊△BEF繞頂點(diǎn)B順時(shí)針旋轉(zhuǎn),邊EF所在直線與∠MBN的BN邊相交于點(diǎn)C,并在BM邊上截取AB=BC,連接AE.(1)將等邊△BEF旋轉(zhuǎn)至如圖①所示位置時(shí),求證:CE=BE+AE;(2)將等邊△BEF順時(shí)針旋轉(zhuǎn)至如圖②、圖③位置時(shí),請(qǐng)分別直接寫出AE,BE,CE之間的數(shù)量關(guān)系,不需要證明;(3)在(1)和(2)的條件下,若BF=4,AE=1,則CE=.【解答】(1)證明:∵△BEF為等邊三角形,∴BE=EF=BF,∠EBF=60°,∴∠EBA+∠ABF=60°,∵∠MBN=60°,∴∠CBF+∠ABF=60°,∴∠EBA=∠CBF,在△ABE與△CBF中,,∴△ABE≌△CBF(SAS),∴AE=CF,∵CE=EF+CF,∴CE=BE+AE;(2)解:圖②結(jié)論為CE=BE﹣AE,圖③結(jié)論為CE=AE﹣BE,圖②的理由如下:∵△BEF為等邊三角形,∴BE=EF=BF,∠EBF=60°,∴∠EBA+∠ABF=60°,∵∠MBN=60°,∴∠CBF+∠ABF=60°,∴∠EBA=∠CBF,在△ABE與△CBF中,,∴△ABE≌△CBF(SAS),∴AE=CF,∵CE=EF﹣CF,∴CE=BE﹣AE,圖③的利用如下:∵△BEF為等邊三角形,∴BE=EF=BF,∠EBF=60°,∴∠EBA+∠ABF=60°,∵∠MBN=60°,∴∠CBF+∠ABF=60°,∴∠EBA=∠CBF,在△ABE與△CBF中,,∴△ABE≌△CBF(SAS),∴AE=CF,∵CE=CF﹣EF,∴CE=AE﹣BE;(3)解:在(1)條件下,CE=BE+AE=BF+AE=4+1=5;在(2)條件下,CE=BE﹣AE=BF﹣AE=4﹣1=3,綜上所述,CE=3或5,故答案為:3或5.5.已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊長分別交CB、DC(或它們的延長線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.(1)如圖①,當(dāng)∠MAN點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請(qǐng)你直接寫出AH與AB的數(shù)量關(guān)系:;(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫出理由,如果成立請(qǐng)證明;(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長.【解答】解:(1)如圖①AH=AB,∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在△ABM與△ADN中,,∴△ABM≌△ADN,∴∠BAM=∠DAN,AM=AN,∵AH⊥MN,∴∠MAH=MAN=22.5°,∵∠BAM+∠DAN=45°,∴∠BAM=22.5°,在△ABM與△AHM中,,∴△ABM≌△AHM,∴AB=AH;故答案為:AH=AB;(2)數(shù)量關(guān)系成立.如圖②,延長CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∴∠EAM=∠NAM=45°,在△AEM和△ANM中,,∴△AEM≌△ANM,∴S△AEM=S△ANM,EM=MN,∵AB、AH是△AEM和△ANM對(duì)應(yīng)邊上的高,∴AB=AH;(3)如圖③分別沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°,分別延長BM和DN交于點(diǎn)C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD,設(shè)AH=x,則MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2,∴52=(x﹣2)2+(x﹣3)2,解得x1=6,x2=﹣1(不符合題意,舍去)∴AH=6.6.問題提出:如圖1:在△ABC中,BC=10且∠BAC=45°,點(diǎn)O為△ABC的外心,則△ABC的外接圓半徑是.問題探究:如圖2,正方形ABCD中,E、F分別是邊BC、CD兩邊上點(diǎn)且∠EAF=45°,請(qǐng)問線段BE、DF、EF有怎樣的數(shù)量關(guān)系?并說明理由.問題解決:如圖3,四邊形ABCD中,AB=AD=4,∠B=45°,∠D=135°,點(diǎn)E、F分別是射線CB、CD上的動(dòng)點(diǎn),并且∠EAF=∠C=60°,試問△AEF的面積是否存在最小值?若存在,請(qǐng)求出最小值.若不存在,請(qǐng)說明理由.【解答】解:(1)如圖1,作出△ABC的外接圓⊙O,∵∠A=45°,∴∠BOC=90°,∵BC=10,∴OB=sin45°×BC=,故答案為:5.(2)EF=BE+DF,理由如下:如圖2,延長EB,使BG=DF,連接AG,∵四邊形ABCD是正方形,∴AB=AD,∠ABG=∠D=90°,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠GAB=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠GAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴EF=GE=DF+BE,(3)存在最小值,如圖3,延長CB,使BG=DF,∵∠ABC=45°,∴∠ABG=135°,∴∠ABG=∠ADF,又∵AB=AD,∴△ABG≌△ADF(SAS),∴∠GAB=∠FAD,AG=AF,∵∠ABC=45°,∠D=135°,∠C=60°,∴∠BAD=120°,∵∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠GAE=60°,∴△GAE≌△FAE(SAS),在△AEF中,∵∠EAF=60°,AH=4,∴EF邊上的高AK=4,畫△AEF的外接圓⊙O,作OM⊥EF于M,∵∠EAF=60°,∴∠EOM=60°,設(shè)OM=x,EM=,OE=2x,EF=2,∵OM+OA≥AK,∴x+2x≥4,∴x≥,∴EF的最小值為2×,∴S△AEF的最小值為.7.如圖1,在正方形ABCD中,E、F分別是BC,CD上的點(diǎn),且∠EAF=45度.則有結(jié)論EF=BE+FD成立;(1)如圖2,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說明理由.(2)若將(1)中的條件改為:如圖3,在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長BC到點(diǎn)E,延長CD到點(diǎn)F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫出它們的數(shù)量關(guān)系并證明.【解答】解:(1)延長CB到G,使BG=FD,連接AG,∵∠ABG=∠D=90°,AB=AD,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠EAF=∠GAE,∴△AEF≌△AEG,∴EF=EG=EB+BG=EB+DF.(2)結(jié)論不成立,應(yīng)為EF=BE﹣DF,證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.8.已知,四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點(diǎn)M、N,連接MN,作AH⊥MN,垂足為點(diǎn)H(1)如圖1,猜想AH與AB有什么數(shù)量關(guān)系?并證明;(2)如圖2,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,CD=3,求AD的長;小萍同學(xué)通過觀察圖①發(fā)現(xiàn),△ABM和△AHM關(guān)于AM對(duì)稱,△AHN和△ADN關(guān)于AN對(duì)稱,于是她巧妙運(yùn)用這個(gè)發(fā)現(xiàn),將圖形如圖③進(jìn)行翻折變換,解答了此題.你能根據(jù)小萍同學(xué)的思路解決這個(gè)問題嗎?【解答】(1)答:AB=AH,證明:延長CB至E使BE=DN,連接AE,∵四邊形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠2+∠3=90°﹣∠MAN=45°,∴∠1+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是對(duì)應(yīng)邊,∴AB=AH(全等三角形對(duì)應(yīng)邊上的高相等);(2)作△ABD關(guān)于直線AB的對(duì)稱△ABE,作△ACD關(guān)于直線AC的對(duì)稱△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延長EB、FC交于點(diǎn)G,則四邊形AEGF是矩形,又∵AE=AD=AF∴四邊形AEGF是正方形,由(1)、(2)知:EB=DB=2,F(xiàn)C=DC=3,設(shè)AD=x,則EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解得x1=6,x2=﹣1,故AD的長為6.9.已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點(diǎn)M、N.(1)如圖1,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),有BM+DN=MN.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),如圖2,請(qǐng)問圖1中的結(jié)論還是否成立?如果成立,請(qǐng)給予證明,如果不成立,請(qǐng)說明理由;(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DN和MN之間有怎樣的等量關(guān)系?請(qǐng)寫出你的猜想,并證明.【解答】解:(1)圖1中的結(jié)論仍然成立,即BM+DN=MN,理由為:如圖2,在MB的延長線上截取BE=DN,連接AE,∵四邊形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:線段BM,DN和MN之間的等量關(guān)系為:DN﹣BM=MN.證明:如圖3,在DN上截取DE=MB,連接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.10.已知正方形ABCD,一等腰直角三角板的一個(gè)銳角頂點(diǎn)與A重合,將此三角板繞A點(diǎn)旋轉(zhuǎn)時(shí),兩邊分別交直線BC、CD于M、N.(1)當(dāng)M、N分別在邊BC、CD上時(shí)(如圖1),求證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論