




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:32.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.123.如圖,A、B、C、D四個點均在⊙O上,∠AOD=50°,AO∥DC,則∠B的度數(shù)為()A.50°B.55°C.60°D.65°4.關于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.5.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.6.如圖,3個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°7.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.328.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.9.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是()A. B. C. D.10.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣611.如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定12.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一個正多邊形的內(nèi)角和是其外角和的3倍,則這個多邊形的邊數(shù)是______.14.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.15.已知整數(shù)k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.16.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.17.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.18.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉(zhuǎn)、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.20.(6分)為倡導“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45cm和60cm,且它們互相垂直,座桿CE的長為20cm.點A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求車架檔AD的長;(2)求車座點E到車架檔AB的距離(結果精確到1cm).21.(6分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.22.(8分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.23.(8分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.24.(10分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)25.(10分)已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F(xiàn),G四個頂點按逆時針方向排列),連接BE、GD,(1)如圖①,當點E在正方形ABCD外時,線段BE與線段DG有何關系?直接寫出結論;(2)如圖②,當點E在線段BD的延長線上,射線BA與線段DG交于點M,且DG=2DM時,求邊AG的長;(3)如圖③,當點E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點M,且DG=4DM時,直接寫出邊AG的長.26.(12分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?27.(12分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.2、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.3、D【解析】試題分析:連接OC,根據(jù)平行可得:∠ODC=∠AOD=50°,則∠DOC=80°,則∠AOC=130°,根據(jù)同弧所對的圓周角等于圓心角度數(shù)的一半可得:∠B=130°÷2=65°.考點:圓的基本性質(zhì)4、C【解析】
直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關函數(shù)的性質(zhì)是解題關鍵.5、D【解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.6、B【解析】
將圓補充完整,利用圓周角定理找出點E的位置,再根據(jù)菱形的性質(zhì)即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結合圖形找出點E的位置是解題的關鍵.7、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.8、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.9、C【解析】
根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關鍵在于確定a、b的大小10、C【解析】
如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【點睛】本題考查反比例函數(shù)于一次函數(shù)的交點問題,銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.11、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網(wǎng),當x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.12、C【解析】
根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關定理及性質(zhì)以及一副三角板中各個角的度數(shù)是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8【解析】
解:設邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個多邊形的邊數(shù)是8.14、3或1【解析】
由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應用等知識.注意掌握分類討論思想的應用是解此題的關鍵.15、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!16、1【解析】分析:首先根據(jù)正比例函數(shù)得出a的值,然后將交點坐標代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎題型.根據(jù)正比例函數(shù)得出交點坐標是解題的關鍵.17、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數(shù)k的幾何意義.18、先將圖2以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),再將旋轉(zhuǎn)后的圖形向左平移5個單位.【解析】
變換圖形2,可先旋轉(zhuǎn),然后平移與圖2拼成一個矩形.【詳解】先將圖2以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個單位.【點睛】本題考查了平移和旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)4.8.【解析】
(1)連結OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識點,熟練運算這些知識是解決問題的關鍵.20、63cm.【解析】試題分析:(1)在RtΔACD,AC=45,DC=60,根據(jù)勾股定理可得AD=AC2+CD2即可得到AD的長度;(2)過點E作EF⊥AB,垂足為F,由AE=AC+CE,在直角△試題解析:21、見解析【解析】試題分析:(1)先證得四邊形ABED是平行四邊形,又AB=AD,鄰邊相等的平行四邊形是菱形;(2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.試題解析:梯形ABCD中,AD∥BC,∴四邊形ABED是平行四邊形,又AB=AD,∴四邊形ABED是菱形;(2)∵四邊形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考點:1.菱形的判定;2.直角三角形的性質(zhì);3.平行四邊形的判定22、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關鍵.23、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解析】
(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質(zhì)結合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學生對平行線性質(zhì),平行四邊形性質(zhì)的綜合應用能力,熟練掌握平行線的性質(zhì)是解題的關鍵.24、(1);(2)見解析.【解析】
(1)根據(jù)勾股定理即可得到結論;
(2)取格點S,T,得點R;取格點E,F(xiàn),得點G;連接GR交MN于點P即可得到結果.【詳解】(1);(2)取格點S,T,得點R;取格點E,F(xiàn),得點G;連接GR交MN于點P【點睛】本題考查了作圖-應用與設計作圖,軸對稱-最短距離問題,正確的作出圖形是解題的關鍵.25、(1)結論:BE=DG,BE⊥DG.理由見解析;(1)AG=1;(3)滿足條件的AG的長為1或1.【解析】
(1)結論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.由A,D,E,G四點共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問題;(3)分兩種情形分別畫出圖形即可解決問題;【詳解】(1)結論:BE=DG,BE⊥DG.理由:如圖①中,設BE交DG于點K,AE交DG于點O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物教學活動設計與安排計劃
- 應急管理部門保安工作的執(zhí)行與評估計劃
- 全面解析2024年陪診師考試要點及試題及答案
- 2024年全球金融市場趨勢試題及答案
- 江西西部計劃與企業(yè)責任試題答案解析
- 注冊會計師與精算師考試共通性試題及答案
- 2024年十月份文職崗位勞動合同嵌入眼動追蹤測試項
- 代碼優(yōu)化技巧的試題及答案
- 投資咨詢工程師關鍵因素分析試題及答案
- 大班美術美麗房子
- 部編版小學六年級道德與法治下冊單元復習試卷全冊(含答案)
- 上海市幼兒園幼小銜接活動指導意見(修訂稿)
- 《十萬個為什么》整本書閱讀-課件-四年級下冊語文(統(tǒng)編版)
- 六宮格數(shù)獨100題
- 馬克思主義基本原理期末考試題庫
- 2021醫(yī)療科普短視頻與直播洞察報告
- 常住人口登記表
- 圓周率1000000位 完整版
- 鋁合金電鍍工藝介紹
- 監(jiān)測系統(tǒng)分項能耗數(shù)據(jù)傳輸技術導則
- 最新2022年全國中學生生物學聯(lián)賽山東賽區(qū)高中組預賽試題試題答案及提示
評論
0/150
提交評論