成都十八中學2022-2023學年十校聯(lián)考最后數(shù)學試題含解析_第1頁
成都十八中學2022-2023學年十校聯(lián)考最后數(shù)學試題含解析_第2頁
成都十八中學2022-2023學年十校聯(lián)考最后數(shù)學試題含解析_第3頁
成都十八中學2022-2023學年十校聯(lián)考最后數(shù)學試題含解析_第4頁
成都十八中學2022-2023學年十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結(jié)構(gòu)圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm22.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結(jié)論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個3.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°4.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm5.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個停靠點,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間6.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心,則折痕的長度為()A. B.2 C. D.7.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或308.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.49.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.410.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數(shù)y=(k為常數(shù))的圖象上,則y1、y2、y3的大小關(guān)系為________.12.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.13.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).14.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.15.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.16.如圖,已知,D、E分別是邊BA、CA延長線上的點,且如果,,那么AE的長為______.17.計算:-=________.三、解答題(共7小題,滿分69分)18.(10分)已知二次函數(shù)y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).(1)求這個二次函數(shù)的解析式;(2)點B(2,﹣2)在這個函數(shù)圖象上嗎?(3)你能通過左,右平移函數(shù)圖象,使它過點B嗎?若能,請寫出平移方案.19.(5分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.20.(8分)重慶某中學組織七、八、九年級學生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是度,并補全條形統(tǒng)計圖;經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在??系母怕剩?1.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.22.(10分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣223.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結(jié)AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.24.(14分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.2、B【解析】

通過圖象得到、、符號和拋物線對稱軸,將方程轉(zhuǎn)化為函數(shù)圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經(jīng)過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數(shù)根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的各項系數(shù)與圖象位置的關(guān)系、拋物線對稱性和最值,以及用函數(shù)的觀點解決方程或不等式.3、B【解析】

試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B4、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.5、A【解析】

此題為數(shù)學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為停靠點,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間停靠時,設??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設在點A;故選A.【點睛】此題為數(shù)學知識的應用,考查知識點為兩點之間線段最短.6、C【解析】

過O作OC⊥AB,交圓O于點D,連接OA,由垂徑定理得到C為AB的中點,再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據(jù)勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點睛】此題考查了垂徑定理,勾股定理,以及翻折的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.7、B【解析】方程兩邊同時乘以2,再化出2x2-4x求值.解:x2-2x-3=0

2×(x2-2x-3)=0

2×(x2-2x)-6=0

2x2-4x=6

故選B.8、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎題型.解方程的一般方法的掌握是解題的關(guān)鍵.9、C【解析】

設BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質(zhì),勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關(guān)鍵.10、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、y2<y1<y2【解析】分析:設t=k2﹣2k+2,配方后可得出t>1,利用反比例函數(shù)圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結(jié)論.詳解:設t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數(shù)y=(k為常數(shù))的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,利用反比例函數(shù)圖象上點的坐標特征求出y1、y2、y2的值是解題的關(guān)鍵.12、30或1.【解析】

根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【點睛】本題考查圓周角定理;含30度角的直角三角形.13、y=x2+2x(答案不唯一).【解析】

設此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【詳解】∵拋物線過點(0,0),(﹣2,0),∴可設此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【點睛】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.14、2【解析】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關(guān)系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點睛:此題主要是考查了三角形的三邊關(guān)系,同時注意整數(shù)這一條件.15、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.16、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.17、2【解析】試題解析:原式故答案為三、解答題(共7小題,滿分69分)18、(1)y=﹣(x+1)1;(1)點B(1,﹣1)不在這個函數(shù)的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B;【解析】

(1)根據(jù)待定系數(shù)法即可得出二次函數(shù)的解析式;(1)代入B(1,-1)即可判斷;(3)根據(jù)題意設平移后的解析式為y=-(x+1+m)1,代入B的坐標,求得m的植即可.【詳解】解:(1)∵二次函數(shù)y=a(x+m)1的頂點坐標為(﹣1,0),∴m=1,∴二次函數(shù)y=a(x+1)1,把點A(﹣1,﹣)代入得a=﹣,則拋物線的解析式為:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,點B(1,﹣1)不在這個函數(shù)的圖象上;(3)根據(jù)題意設平移后的解析式為y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì)以及圖象與幾何變換.19、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結(jié)MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關(guān)鍵.20、【解析】

試題分析:(1)求出總的作文篇數(shù),即可得出九年級參賽作文篇數(shù)對應的圓心角的度數(shù),求出八年級的作文篇數(shù),補全條形統(tǒng)計圖即可;(2)設四篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文,用畫樹狀法即可求得結(jié)果.試題解析:(1)20÷20%=100,九年級參賽作文篇數(shù)對應的圓心角=360°×=126°;100﹣20﹣35=45,補全條形統(tǒng)計圖如圖所示:(2)假設4篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文.畫樹狀圖法:共有12種可能的結(jié)果,七年級特等獎作文被選登在??系慕Y(jié)果有6種,∴P(七年級特等獎作文被選登在校刊上)=.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.列表法與畫樹狀圖法.21、(1)詳見解析;(2)10.【解析】

①只需證明兩對對應角分別相等可得兩個三角形相似;故.

②根據(jù)相似三角形的性質(zhì)求出PC長以及AP與OP的關(guān)系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.【詳解】①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°?∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP與△PDA的面積比為1:4,∴OCPD=OPPA=CPDA=14??√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.設OP=x,則OB=x,CO=8?x.在△PCO中,∵∠C=90°,CP=4,OP=x,CO=8?x,∴x2=(8?x)2+42.解得:x=5.∴AB=AP=2OP=10.∴邊AB的長為10.【點睛】本題考查了相似三角形的判定與性質(zhì)以及翻轉(zhuǎn)變換,解題的關(guān)鍵是熟練的掌握相似三角形與翻轉(zhuǎn)變換的相關(guān)知識.22、1.【解析】

按照實數(shù)的運算順序進行運算即可.【詳解】原式=1.【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及絕對值,熟練掌握各個知識點是解題的關(guān)鍵.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論