版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-
.z
ArchitectureStructure
Wehaveandthearchitectsmustdealwiththespatialaspectofactivity,physical,andsymbolicneedsinsuchawaythatoverallperformanceintegrityisassured.Hence,heorshewellwantstothinkofevolvingabuildingenvironmentasatotalsystemofinteractingandspaceformingsubsystems.Isrepresentsaple*challenge,andtomeetitthearchitectwillneedahierarchicdesignprocessthatprovidesatleastthreelevelsoffeedbackthinking:schematic,preliminary,andfinal.
Suchahierarchyisnecessaryifheorsheistoavoidbeingconfused,atconceptualstagesofdesignthinking,bythemyriaddetailissuesthatcandistractattentionfrommorebasicconsiderations.Infact,wecansaythatanarchitect’sabilitytodistinguishthemorebasicformthemoredetailedissuesisessentialtohissuccessasadesigner.
Theobjectoftheschematicfeedbacklevelistogenerateandevaluateoverallsite-plan,activity-interaction,andbuilding-configurationoptions.Todosothearchitectmustbeabletofocusontheinteractionofthebasicattributesofthesiteconte*t,thespatialorganization,andthesymbolismasdeterminantsofphysicalform.Thismeansthat,inschematicterms,thearchitectmayfirstconceiveandmodelabuildingdesignasanorganizationalabstractionofessentialperformance-spaceinteractions.Thenheorshemaye*ploretheoverallspace-formimplicationsoftheabstraction.Asanactualbuildingconfigurationoptionbeginstoemerge,itwillbemodifiedtoincludeconsiderationforbasicsiteconditions.
Attheschematicstage,itwouldalsobehelpfulifthedesignercouldvisualizehisorheroptionsforachievingoverallstructuralintegrityandconsidertheconstructivefeasibilityandeconomicofhisorherscheme.Butthiswillrequirethatthearchitectand/oraconsultantbeabletoconceptualizetotal-systemstructuraloptionsintermsofelementaldetail.Suchoverallthinkingcanbeeasilyfedbacktoimprovethespace-formscheme.
Atthepreliminarylevel,thearchitect’semphasiswillshifttotheelaborationofhisorhermorepromisingschematicdesignoptions.Herethearchitect’sstructuralneedswillshifttoappro*imatedesignofspecificsubsystemoptions.Atthisstagethetotalstructuralschemeisdevelopedtoamiddlelevelofspecificitybyfocusingonidentificationanddesignofmajorsubsystemstothee*tentthattheirkeygeometric,ponent,andinteractivepropertiesareestablished.Basicsubsysteminteractionanddesignconflictscanthusbeidentifiedandresolvedintheconte*toftotal-systemobjectives.Consultantscanplayasignificantpartinthiseffort;thesepreliminary-leveldecisionsmayalsoresultinfeedbackthatcallsforrefinementorevenmajorchangeinschematicconcepts.
Whenthedesignerandtheclientaresatisfiedwiththefeasibilityofadesignproposalatthepreliminarylevel,itmeansthatthebasicproblemsofoveralldesignaresolvedanddetailsarenotlikelytoproducemajorchange.Thefocusshiftsagain,andthedesignprocessmovesintothefinallevel.Atthisstagetheemphasiswillbeonthedetaileddevelopmentofallsubsystemspecifics.Heretheroleofspecialistsfromvariousfields,includingstructuralengineering,ismuchlarger,sincealldetailofthepreliminarydesignmustbeworkedout.DecisionsmadeatthislevelmayproducefeedbackintoLevelIIthatwillresultinchanges.However,ifLevelsIandIIarehandledwithinsight,therelationshipbetweentheoveralldecisions,madeattheschematicandpreliminarylevels,andthespecificsofthefinallevelshouldbesuchthatgrossredesignisnotinquestion,Rather,theentireprocessshouldbeoneofmovinginanevolutionaryfashionfromcreationandrefinement(ormodification)ofthemoregeneralpropertiesofatotal-systemdesignconcept,tothefleshingoutofrequisiteelementsanddetails.
Tosummarize:AtLevelI,thearchitectmustfirstestablish,inconceptualterms,theoverallspace-formfeasibilityofbasicschematicoptions.Atthisstage,collaborationwithspecialistscanbehelpful,butonlyifintheformofoverallthinking.AtLevelII,thearchitectmustbeabletoidentifythemajorsubsystemrequirementsimpliedbytheschemeandsubstantialtheirinteractivefeasibilitybyappro*imatingkeyponentproperties.Thatis,thepropertiesofmajorsubsystemsneedbeworkedoutonlyinsufficientdepthtoverytheinherentpatibilityoftheirbasicform-relatedandbehavioralinteraction.ThiswillmeanasomewhatmorespecificformofcollaborationwithspecialiststhenthatinlevelI.AtlevelIII,thearchitectandthespecificformofcollaborationwithspecialiststhenthatprovidingforalloftheelementaldesignspecificsrequiredtoproducebiddableconstructiondocuments.
OfcoursethissuccessesfromthedevelopmentoftheStructuralMaterial.
ReinforcedConcrete
Plainconcreteisformedfromahardenedmi*tureofcement,water,fineaggregate,coarseaggregate(crushedstoneorgravel),air,andoftenotheradmi*tures.Theplasticmi*isplacedandconsolidatedintheformwork,thencuredtofacilitatetheaccelerationofthechemicalhydrationreactionlfthecement/watermi*,resultinginhardenedconcrete.Thefinishedproducthashighpressivestrength,andlowresistancetotension,suchthatitstensilestrengthisappro*imatelyonetenthlfitspressivestrength.Consequently,tensileandshearreinforcementinthetensileregionsofsectionshastobeprovidedtopensatefortheweaktensionregionsinthereinforcedconcreteelement.
tisthisdeviationinthepositionofareinforcesconcretesectionfromthehomogeneityofstandardwoodorsteelsectionsthatrequiresamodifiedapproachtothebasicprinciplesofstructuraldesign.Thetwoponentsoftheheterogeneousreinforcedconcretesectionaretobesoarrangedandproportionedthatoptimaluseismadeofthematerialsinvolved.Thisispossiblebecauseconcretecaneasilybegivenanydesiredshapebyplacingandpactingthewetmi*tureoftheconstituentingredientsareproperlyproportioned,thefinishedproductbeesstrong,durable,and,inbinationwiththereinforcingbars,adaptableforuseasmainmembersofanystructuralsystem.
Thetechniquesnecessaryforplacingconcretedependonthetypeofmembertobecast:thatis,whetheritisacolumn,abean,awall,aslab,afoundation.amasscolumns,orane*tensionofpreviouslyplacedandhardenedconcrete.Forbeams,columns,andwalls,theformsshouldbewelloiledaftercleaningthem,andthereinforcementshouldbeclearedofrustandotherharmfulmaterials.Infoundations,theearthshouldbepactedandthoroughlymoistenedtoabout6in.indepthtoavoidabsorptionofthemoisturepresentinthewetconcrete.Concreteshouldalwaysbeplacedinhorizontallayerswhicharepactedbymeansofhighfrequencypower-drivenvibratorsofeithertheimmersionore*ternaltype,asthecaserequires,unlessitisplacedbypumping.Itmustbekeptinmind,however,thatovervibrationcanbeharmfulsinceitcouldcausesegregationoftheaggregateandbleedingoftheconcrete.
Hydrationofthecementtakesplaceinthepresenceofmoistureattemperaturesabove50°F.Itisnecessarytomaintainsuchaconditioninorderthatthechemicalhydrationreactioncantakeplace.Ifdryingistoorapid,surfacecrackingtakesplace.Thiswouldresultinreductionofconcretestrengthduetocrackingaswellasthefailuretoattainfullchemicalhydration.
Itisclearthatalargenumberofparametershavetobedealtwithinproportioningareinforcedconcreteelement,suchasgeometricalwidth,depth,areaofreinforcement,steelstrain,concretestrain,steelstress,andsoon.Consequently,trialandadjustmentisnecessaryinthechoiceofconcretesections,withassumptionsbasedonconditionsatsite,availabilityoftheconstituentmaterials,particulardemandsoftheowners,architecturalandheadroomrequirements,theapplicablecodes,andenvironmentalreinforcedconcreteisoftenasite-constructedposite,incontrasttothestandardmill-fabricatedbeamandcolumnsectionsinsteelstructures.Atrialsectionhastobechosenforeachcriticallocationinastructuralsystem.
Thetrialsectionhastobeanalyzedtodetermineifitsnominalresistingstrengthisadequatetocarrytheappliedfactoredload.Sincemorethanonetrialisoftennecessarytoarriveattherequiredsection,thefirstdesigninputstepgeneratesintoaseriesoftrial-and-adjustmentanalyses.
Thetrial-and–adjustmentproceduresforthechoiceofaconcretesectionleadtotheconvergenceofanalysisanddesign.Henceeverydesignisananalysisonceatrialsectionischosen.Theavailabilityofhandbooks,charts,andpersonalputersandprogramssupportsthisapproachasamoreefficient,pact,andspeedyinstructionalmethodparedwiththetraditionalapproachoftreatingtheanalysisofreinforcedconcreteseparatelyfrompuredesign.
Earthwork
Becauseearthmovingmethodsandcostschangemorequicklythanthoseinanyotherbranchofcivilengineering,thisisafieldwheretherearerealopportunitiesfortheenthusiast.In1935mostofthemethodsnowinuseforcarryingande*cavatingearthwithrubber-tyredequipmentdidnote*ist.Mostearthwasmovedbynarrowrailtrack,nowrelativelyrare,andthemainmethodsofe*cavation,withfaceshovel,backacter,ordraglineorgrab,thoughtheyarestillwidelyusedareonlyafewofthemanycurrentmethods.Tokeephisknowledgeofearthmovingequipmentuptodateanengineermustthereforespendtinestudyingmodernmachines.Generallytheonlyreliableup-to-dateinformationone*cavators,loadersandtransportisobtainablefromthemakers.
Earthworksorearthmovingmeanscuttingintogroundwhereitssurfaceistoohigh(cuts),anddumpingtheearthinotherplaceswherethesurfaceistoolow(fills).Toreduceearthworkcosts,thevolumeofthefillsshouldbeequaltothevolumeofthecutsandwhereverpossiblethecutsshouldbeplacedneartofillsofequalvolumesoastoreducetransportanddoublehandlingofthefill.Thisworkofearthworkdesignfallsontheengineerwholaysouttheroadsinceitisthelayoutoftheearthworkmorethananythingelsewhichdecidesitscheapness.Fromtheavailablemapsahdlevels,theengineeringmusttrytoreachasmanydecisionsaspossibleinthedrawingofficebydrawingcrosssectionsoftheearthwork.Onthesitewhenfurtherinformationbeesavailablehecanmakechangesinhissectionsandlayout,butthedrawingofficeworkwillnothavebeenlost.Itwillhavehelpedhimtoreachthebestsolutionintheshortesttime.
Thecheapestwayofmovingearthistotakeitdirectlyoutofthecutanddropitasfillwiththesamemachine.Thisisnotalwayspossible,butwhenitcanbedoneitisideal,beingbothquickandcheap.Draglines,bulldozersandfaceshovelsandothis.Thelargestradiusisobtainedwiththedragline,andthelargesttonnageofearthismovedbythebulldozer,thoughonlyovershortdistances.Thedisadvantagesofthedraglinearethatitmustdigbelowitself,itcannotdigwithforceintopactedmaterial,itcannotdigonsteepslopes,anditsdumpinganddiggingarenotaccurate.
Faceshovelsarebetweenbulldozersanddraglines,havingalargerradiusofactionthanbulldozersbutlessthandraglines.Theyareabletodigintoaverticalclifffaceinawaywhichwouldbedangeroustorabulldozeroperatorandimpossibleforadragline.Eachpieceofequipmentshouldbeleveloftheirtracksandfordeepdigsinpactmaterialabackacterismostuseful,butitsdumpingradiusisconsiderablylessthanthatofthesameescavatorfittedwithafaceshovel.
Rubber-tyredbowlscrapersareindispensableforfairlyleveldiggingwherethedistanceoftransportistoomuchtoradraglineorfaceshovel.Theycandigthematerialdeeply(butonlybelowthemselves)toafairlyflatsurface,carryithundredsofmetersifneedbe,thendropitandlevelitroughlyduringthedumping.Forharddiggingitisoftenfoundeconomicaltokeepapushertractor(wheeledortracked)onthediggingsite,topusheachscraperasitreturnstodig.Assoonasthescraperisfull,thepushertractorreturnstothebeginningofthedigtohelpthenestscraper.
Bowlscrapersareoftene*tremelypowerfulmachines;manymakersbuildscrapersof8cubicmetersstruckcapacity,whichcarry10m3heaped.Thelargestself-propelledscrapersareof19m3struckcapacity(25m3heaped)andtheyaredrivenbyatractorengineof430horse-powers.
Dumpersareprobablythemonestrubber-tyredtransportsincetheycanalsoconvenientlybeusedforcarryingconcreteorotherbuildingmaterials.Dumpershavetheearthcontaineroverthefronta*leonlargerubber-tyredwheels,andthecontainertipsforwardsonmosttypes,thoughinarticulateddumpersthedirectionoftipcanbewidelyvaried.Thesmallestdumpershaveacapacityofabout0.5m3,andthelargeststandardtypesareofabout4.5m3.Specialtypesincludetheself-loadingdumperofupto4m3andthearticulatedtypeofabout0.5m3.Thedistinctionbetweendumpersanddumptrucksmustberemembered.dumperstipforwardsandthedriversitsbehindtheload.Dumptrucksareheavy,strengthenedtippinglorries,thedrivertravelsinfrontlftheloadandtheloadisdumpedbehindhim,sotheyaresometimescalledrear-dumptrucks.
SafetyofStructures
Theprincipalscopeofspecificationsistoprovidegeneralprinciplesandputationalmethodsinordertoverifysafetyofstructures.The“safetyfactor〞,whichaccordingtomoderntrendsisindependentofthenatureandbinationofthematerialsused,canusuallybedefinedastheratiobetweentheconditions.Thisratioisalsoproportionaltotheinverseoftheprobability(risk)offailureofthestructure.
Failurehastobeconsiderednotonlyasoverallcollapseofthestructurebutalsoasun-serviceabilityor,accordingtoamoreprecise.mondefinition.Asthereachingofa“l(fā)imitstate〞whichcausestheconstructionnottoacplishthetaskitwasdesignedfor.Therearetwocategoriesoflimitstate:
Ultimatelimitsate,whichcorrespondstothehighestvalueoftheload-bearingcapacity.E*amplesincludelocalbucklingorglobalinstabilityofthestructure;failureofsomesectionsandsubsequenttransformationofthestructureintoamechanism;failurebyfatigue;elasticorplasticdeformationorcreepthatcauseasubstantialchangeofthegeometryofthestructure;andsensitivityofthestructuretoalternatingloads,tofireandtoe*plosions.
Servicelimitstates,whicharefunctionsoftheuseanddurabilityofthestructure.E*amplesincludee*cessivedeformationsanddisplacementswithoutinstability;earlyore*cessivecracks;largevibrations;andcorrosion.
putationalmethodsusedtoverifystructureswithrespecttothedifferentsafetyconditionscanbeseparatedinto:
(1)Deterministicmethods,inwhichthemainparametersareconsideredasnonrandomparameters.
(2)Probabilisticmethods,inwhichthemainparametersareconsideredasrandomparameters.
Alternatively,withrespecttothedifferentuseoffactorsofsafety,putationalmethodscanbeseparatedinto:
Allowablestressmethod,inwhichthestressesputedunderma*imumloadsareparedwiththestrengthofthematerialreducedbygivensafetyfactors.(2)Limitstatesmethod,inwhichthestructuremaybeproportionedonthebasisofitsma*imumstrength.Thisstrength,asdeterminedbyrationalanalysis,shallnotbelessthanthatrequiredtosupportafactoredloadequaltothesumofthefactoredliveloadanddeadload(ultimatestate).
Thestressescorrespondingtoworking(service)conditionswithun-factoredliveanddeadloadsareparedwithprescribedvalues(servicelimitstate).Fromthefourpossiblebinationsofthefirsttwoandsecondtwomethods,wecanobtainsomeusefulputationalmethods.Generally,twobinationsprevail:
deterministicmethods,whichmakeuseofallowablestresses.
Probabilisticmethods,whichmakeuseoflimitstates.
Themainadvantageofprobabilisticapproachesisthat,atleastintheory,itispossibletoscientificallytakeintoaccountallrandomfactorsofsafety,babilisticapproachesdependupon:
(1)Randomdistributionofstrengthofmaterialswithrespecttotheconditionsoffabricationanderection(scatterofthevaluesofmechanicalpropertiesthroughoutthestructure);
(2)Uncertaintyofthegeometryofthecross-sectionsandofthestructure(faultsandimperfectionsduetofabricationanderection
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年四川雅安市棧道商務(wù)信息咨詢(xún)有限責(zé)任公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025年甘肅天祝縣農(nóng)業(yè)產(chǎn)業(yè)扶貧開(kāi)發(fā)有限責(zé)任公司招聘筆試參考題庫(kù)附帶答案詳解
- 環(huán)??萍荚谵r(nóng)業(yè)中的應(yīng)用與前景
- 二零二五年度社區(qū)便利店水果專(zhuān)柜承包合同3篇
- 二零二五年度車(chē)輛牌照租賃與二手車(chē)置換服務(wù)合同4篇
- 二零二五年度出租車(chē)司機(jī)職業(yè)發(fā)展規(guī)劃合同樣本4篇
- 2025年度土地資源開(kāi)發(fā)與利用合同3篇
- 煙臺(tái)2024年山東煙臺(tái)市公安局招錄警務(wù)輔助人員32人筆試歷年參考題庫(kù)附帶答案詳解
- 溫州浙江溫州蒼南縣人武部招聘民兵教練員駕駛員筆試歷年參考題庫(kù)附帶答案詳解
- 二零二五年度圖書(shū)編輯出版合同范本3篇
- 被執(zhí)行人給法院執(zhí)行局寫(xiě)申請(qǐng)范本
- 2023年貴州省畢節(jié)市中考物理試題(原卷+解析版)真題含答案
- 飯店管理基礎(chǔ)知識(shí)(第三版)中職PPT完整全套教學(xué)課件
- 2023年重慶市中考物理A卷試卷【含答案】
- 從中國(guó)制造到中國(guó)創(chuàng)造(優(yōu)秀課件)
- 【打印版】意大利斜體英文字帖(2022年-2023年)
- 2023年浙江省嘉興市中考數(shù)學(xué)試題及答案
- 【考試版】蘇教版2022-2023學(xué)年四年級(jí)數(shù)學(xué)下冊(cè)開(kāi)學(xué)摸底考試卷(五)含答案與解析
- 《分?jǐn)?shù)的基本性質(zhì)》數(shù)學(xué)評(píng)課稿10篇
- 第八章 客戶(hù)關(guān)系管理
- 新版人教版高中英語(yǔ)選修一、選修二詞匯表
評(píng)論
0/150
提交評(píng)論