![安徽省黌學高級中學2023年高考數(shù)學全真模擬密押卷含解析_第1頁](http://file4.renrendoc.com/view/73c3303a3f997996e1c407ea10c0dbd4/73c3303a3f997996e1c407ea10c0dbd41.gif)
![安徽省黌學高級中學2023年高考數(shù)學全真模擬密押卷含解析_第2頁](http://file4.renrendoc.com/view/73c3303a3f997996e1c407ea10c0dbd4/73c3303a3f997996e1c407ea10c0dbd42.gif)
![安徽省黌學高級中學2023年高考數(shù)學全真模擬密押卷含解析_第3頁](http://file4.renrendoc.com/view/73c3303a3f997996e1c407ea10c0dbd4/73c3303a3f997996e1c407ea10c0dbd43.gif)
![安徽省黌學高級中學2023年高考數(shù)學全真模擬密押卷含解析_第4頁](http://file4.renrendoc.com/view/73c3303a3f997996e1c407ea10c0dbd4/73c3303a3f997996e1c407ea10c0dbd44.gif)
![安徽省黌學高級中學2023年高考數(shù)學全真模擬密押卷含解析_第5頁](http://file4.renrendoc.com/view/73c3303a3f997996e1c407ea10c0dbd4/73c3303a3f997996e1c407ea10c0dbd45.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.2.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.3.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.5.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.6.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺7.已知是第二象限的角,,則()A. B. C. D.8.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.259.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.10.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.11.已知雙曲線的焦距為,若的漸近線上存在點,使得經(jīng)過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.12.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.已知集合,,則_____________.15.滿足約束條件的目標函數(shù)的最小值是.16.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當_____時,外心的橫坐標最大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),當時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.18.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.19.(12分)已知,均為正項數(shù)列,其前項和分別為,,且,,,當,時,,.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.21.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.22.(10分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數(shù)的運算,屬于基礎題2、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.3、A【解析】
試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系4、C【解析】
由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎題.5、D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關系.本題的關鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.6、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個四棱錐和1個直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計算是解題的關鍵.7、D【解析】
利用誘導公式和同角三角函數(shù)的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數(shù)的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.8、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.9、B【解析】
設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,
,
當且僅當三點共線時,取“=”號,∴的最小值為.
故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質(zhì)的應用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.10、C【解析】
設射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.11、B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應用.12、D【解析】
利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.14、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎題.15、-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.16、【解析】
由已知可得、的坐標,求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標,再由導數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設,則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點坐標為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當時,,當時,.當時,函數(shù)取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關系的應用,訓練了利用導數(shù)求最值,是中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】
(1)由題意得到關于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當時,函數(shù)取得極小值,極小值為.當時,有極大值3.【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導數(shù)與原函數(shù)的關系,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),,,,,,.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵,屬中等題.19、(1),(2)【解析】
(1),所,兩式相減,即可得到數(shù)列遞推關系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數(shù)列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當時,,解得,所以數(shù)列是首項和公比均為的等比數(shù)列,即,因為,整理得,又因為,所以,所以,即,因為,所以數(shù)列是以首項和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數(shù)列的通項公式,以及數(shù)列求和,關鍵在于對題中所給關系合理變形,發(fā)現(xiàn)其中的關系,裂項求和作為一類常用的求和方法,需要在平常的學習中多做積累常見的裂項方式.20、(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構造等比數(shù)列,求其通項公式,進而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減法求數(shù)列的前n項和的問題,屬于中檔題.21、(1);(2).【解析】
(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導數(shù)求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設,則,令,則,即.設,且,則當時,,所以單調(diào)遞減;當時,,所以單調(diào)遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導數(shù)在實際問題中的應用,考查學生的數(shù)學運算求解能力,是一道中檔題.22、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導數(shù),分類討論的范圍,利用導數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數(shù)為減函數(shù);當時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當時,即當時,,由,得,此時,函數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級上冊道德與法治第一單元 走進社會生活則 復習聽課評課記錄
- 蘇科版數(shù)學八年級下冊《9.1 圖形的旋轉(zhuǎn)》聽評課記錄2
- 蘇教版小學五年級上冊數(shù)學口算練習題
- 出國勞務派遣合同范本
- IT程序員保密協(xié)議書范本
- 深圳經(jīng)濟特區(qū)房產(chǎn)抵押貸款協(xié)議書范本
- 全國事業(yè)單位聘用合同范本
- 鄉(xiāng)村振興戰(zhàn)略合作合同范本
- 股份合伙協(xié)議書范本
- 腳手架租賃合同
- 《走進神奇》說課稿
- 江蘇省無錫市2024年中考數(shù)學試卷(含答案)
- 2024年內(nèi)蒙古中考語文試卷五套合卷附答案
- 2024年保密知識測試試題及答案(奪冠)
- 湖南2024年湖南省衛(wèi)生健康委直屬事業(yè)單位招聘276人筆試歷年典型考題及考點附答案解析
- SF-36生活質(zhì)量調(diào)查表(SF-36-含評分細則)
- 五年級下冊語文教案 學習雙重否定句 部編版
- 不需公證的遺囑范文
- 實驗動物與動物福利
- 南京地區(qū)幼兒園室內(nèi)空氣污染物與兒童健康的相關性研究
- 2024年湖南鐵路科技職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
評論
0/150
提交評論