2023年河北省張家口市尚義縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
2023年河北省張家口市尚義縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
2023年河北省張家口市尚義縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
2023年河北省張家口市尚義縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
2023年河北省張家口市尚義縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.2.若直線被圓截得弦長(zhǎng)為4,則的最小值是()A.9 B.4 C. D.3.在中,,,分別為角,,的對(duì)邊,若的面為,且,則()A.1 B. C. D.4.已知四棱錐中,平面平面,其中為正方形,為等腰直角三角形,,則四棱錐外接球的表面積為()A. B. C. D.5.從三件正品、一件次品中隨機(jī)取出兩件,則取出的產(chǎn)品全是正品的概率是()A. B. C. D.6.若,滿足,則的最大值為().A. B. C. D.7.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項(xiàng)等于()A. B. C.或 D.8.函數(shù)的定義域是().A. B. C. D.9.若一個(gè)數(shù)列的前三項(xiàng)依次為6,18,54,則此數(shù)列的一個(gè)通項(xiàng)公式為()A. B. C. D.10.已知直三棱柱的所有頂點(diǎn)都在球0的表面上,,,則=()A.1 B.2 C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對(duì)邊長(zhǎng)分別為,若,則的最小值為_(kāi)_________.12.方程,的解集是__________.13.已知a,b為常數(shù),若,則______;14.若函數(shù)的圖象過(guò)點(diǎn),則___________.15.無(wú)窮等比數(shù)列的首項(xiàng)是某個(gè)正整數(shù),公比為單位分?jǐn)?shù)(即形如:的分?jǐn)?shù),為正整數(shù)),若該數(shù)列的各項(xiàng)和為3,則________.16.已知數(shù)列的通項(xiàng)公式為,是其前項(xiàng)和,則_____.(結(jié)果用數(shù)字作答)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,然后再向右平移()個(gè)單位長(zhǎng)度,所得函數(shù)的圖象關(guān)于軸對(duì)稱.求的最小值18.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,S3=,S6=.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)令bn=6n-61+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.19.在等比數(shù)列中,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.20.如圖,在平行四邊形中,邊所在直線的方程為,點(diǎn).(Ⅰ)求直線的方程;(Ⅱ)求邊上的高所在直線的方程.21.已知點(diǎn),,均在圓上.(1)求圓的方程;(2)若直線與圓相交于,兩點(diǎn),求的長(zhǎng);(3)設(shè)過(guò)點(diǎn)的直線與圓相交于、兩點(diǎn),試問(wèn):是否存在直線,使得恰好平分的外接圓?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點(diǎn)評(píng)】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.2、A【解析】

圓方程配方后求出圓心坐標(biāo)和半徑,知圓心在已知直線上,代入圓心坐標(biāo)得滿足的關(guān)系,用“1”的代換結(jié)合基本不等式求得的最小值.【詳解】圓標(biāo)準(zhǔn)方程為,圓心為,半徑為,直線被圓截得弦長(zhǎng)為4,則圓心在直線上,∴,,又,∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.∴的最小值是1.故選:A.【點(diǎn)睛】本題考查用基本不等式求最值,解題時(shí)需根據(jù)直線與圓的位置關(guān)系求得的關(guān)系,然后用“1”的代換法把湊配出可用基本不等式的形式,從而可求得最值.3、D【解析】

根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡(jiǎn)求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點(diǎn)睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計(jì)算是解決本題的關(guān)鍵.4、D【解析】

因?yàn)闉榈妊苯侨切危?故,則點(diǎn)到平面的距離為,而底面正方形的中心到邊的距離也為,則頂點(diǎn)正方形中心的距離,正方形的外接圓的半徑為,故正方形的中心是球心,則球的半徑為,所以該幾何體外接球的表面積,應(yīng)選D.5、B【解析】

利用古典概型概率公式求解即可.【詳解】設(shè)三件正品分別記為,一件次品記為則從三件正品、一件次品中隨機(jī)取出兩件,取出的產(chǎn)品可能為,共6種情況,其中取出的產(chǎn)品全是正品的有3種所以產(chǎn)品全是正品的概率故選:B【點(diǎn)睛】本題主要考查了利用古典概型概率公式計(jì)算概率,屬于基礎(chǔ)題.6、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當(dāng)時(shí),可行域?yàn)樗倪呅蝺?nèi)部,目標(biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,此時(shí),,當(dāng)時(shí),可行域?yàn)槿切?,目?biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,,綜上,的最大值為.故選.點(diǎn)睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域.(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值.注意解答本題時(shí)不要忽視斜率不存在的情形.7、C【解析】

在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項(xiàng)公式可得:.可得,利用二次函數(shù)的單調(diào)性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時(shí),,或9時(shí),,數(shù)列的最大項(xiàng)等于或.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式、累乘法、二次函數(shù)的單調(diào)性,考查推理能力與計(jì)算能力,屬于中檔題.8、C【解析】函數(shù)的定義域即讓原函數(shù)有意義即可;原式中有對(duì)數(shù),則故得到定義域?yàn)?故選C.9、C【解析】

,,,可以歸納出數(shù)列的通項(xiàng)公式.【詳解】依題意,,,,所以此數(shù)列的一個(gè)通項(xiàng)公式為,故選:C.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)公式,主要考查歸納法得到數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.10、B【解析】

由題得在底面的投影為的外心,故為的中點(diǎn),再利用數(shù)量積計(jì)算得解.【詳解】依題意,在底面的投影為的外心,因?yàn)?,故為的中點(diǎn),,故選B.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【點(diǎn)睛】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.12、【解析】

用正弦的二倍角公式展開(kāi),得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、2【解析】

根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計(jì)算出的值,由此可計(jì)算出的值.【詳解】因?yàn)椋?,又因?yàn)椋?,所?故答案為:.【點(diǎn)睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.14、【解析】

由過(guò)點(diǎn),求得a,代入,令,即可得到本題答案【詳解】因?yàn)榈膱D象過(guò)點(diǎn),所以,所以,故.故答案為:-5【點(diǎn)睛】本題主要考查函數(shù)的解析式及利用解析式求值.15、【解析】

利用無(wú)窮等比數(shù)列的各項(xiàng)和,可求得,從而,利用首項(xiàng)是某個(gè)自然數(shù),可求,進(jìn)而可求出.【詳解】無(wú)窮等比數(shù)列各項(xiàng)和為3,,是個(gè)自然數(shù),則,.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.16、.【解析】

由題意知,數(shù)列的偶數(shù)項(xiàng)成等差數(shù)列,奇數(shù)列成等比數(shù)列,然后利用等差數(shù)列和等比數(shù)列的求和公式可求出的值.【詳解】由題意可得,故答案為.【點(diǎn)睛】本題考查奇偶分組求和,同時(shí)也考查等差數(shù)列求和以及等比數(shù)列求和,解題時(shí)要得出公差和公比,同時(shí)也要確定出對(duì)應(yīng)的項(xiàng)數(shù),考查運(yùn)算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),,.(2).【解析】

(1)根據(jù)誘導(dǎo)公式,二倍角公式,輔助角公式把化為的形式,再根據(jù)復(fù)合函數(shù)單調(diào)性求解;(2)先根據(jù)變換關(guān)系得到函數(shù)解析式,所得函數(shù)的圖象關(guān)于軸對(duì)稱,則時(shí),.【詳解】(1)當(dāng)即時(shí),函數(shù)單調(diào)遞減,所以函數(shù)的單調(diào)遞減區(qū)間為.(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,然后再向右平移()個(gè)單位長(zhǎng)度,所得函數(shù)為,若圖象關(guān)于軸對(duì)稱,則,即,解得,又,則當(dāng)時(shí),有最小值.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和圖像的變換.關(guān)鍵在于化為的形式,三角函數(shù)的平移變換是易錯(cuò)點(diǎn).18、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】

(1)根據(jù)等比數(shù)列的通項(xiàng)公式和前項(xiàng)求得.(2)將代入中,得是等差數(shù)列,再求和.【詳解】(1)∴,解得∴(2)∴∴數(shù)列是等差數(shù)列.又∴【點(diǎn)睛】本題考查等比數(shù)列和等差數(shù)列的通項(xiàng)和前項(xiàng)和,屬于基礎(chǔ)題.19、(1);(2).【解析】

(1)設(shè)出通項(xiàng)公式,利用待定系數(shù)法即得結(jié)果;(2)先求出通項(xiàng),利用錯(cuò)位相減法可以得到前項(xiàng)和.【詳解】(1)因?yàn)椋?,所以,解得故的通?xiàng)公式為.(2)由(1)可得,則,①,②①-②得故.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法求和,意在考查學(xué)生的分析能力及計(jì)算能力,難度中等.20、解:(Ⅰ)∵是平行四邊形直線CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直線方程為,.【解析】略21、(1);(2);(3)存在,和.【解析】

(1)根據(jù)圓心在,的中垂線上,設(shè)圓心的坐標(biāo)為,根據(jù)求出的值,從而可得結(jié)果;(2)利用點(diǎn)到直線的距離公式以及勾股定理可得結(jié)果;(3)首先驗(yàn)證直線的斜率不存在時(shí)符合題意,然后斜率存在時(shí),設(shè)出直線方程,與圓的方程聯(lián)立,利用韋達(dá)定理,根據(jù)列方程求解即可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論