版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列1,,,9是等差數(shù)列,數(shù)列1,,,,9是等比數(shù)列,則()A. B. C. D.2.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.43.若,,則等于()A. B. C. D.4.在正方體中為底面的中心,為的中點,則異面直線與所成角的正弦值為()A. B. C. D.5.在中,角所對的邊分別為,若,,,則等于()A.4 B. C. D.6.已知樣本數(shù)據(jù)為3,1,3,2,3,2,則這個樣本的中位數(shù)與眾數(shù)分別為()A.2,3 B.3,3 C.2.5,3 D.2.5,27.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.8.在一段時間內(nèi)有2000輛車通過高速公路上的某處,現(xiàn)隨機抽取其中的200輛進行車速統(tǒng)計,統(tǒng)計結(jié)果如右面的頻率分布直方圖所示.若該處高速公路規(guī)定正常行駛速度為90km/h~120km/h,試估計2000輛車中,在這段時間內(nèi)以正常速度通過該處的汽車約有()A.30輛 B.1700輛 C.170輛 D.300輛9.把函數(shù),圖象上所有的點向右平行移動個單位長度,橫坐標伸長到原來的2倍,所得圖象對應(yīng)的函數(shù)為()A. B.C. D.10.已知網(wǎng)格紙的各個小格均是邊長為一個單位的正方形,一個幾何體的三視圖如圖中粗線所示,則該幾何體的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點,點,則________.12.已知在數(shù)列中,,,則數(shù)列的通項公式______.13.中,,,,則______.14.已知函數(shù),數(shù)列的通項公式是,當取得最小值時,_______________.15.已知在中,角A,B,C的對邊分別為a,b,c,,,的面積等于,則外接圓的面積為______.16.已知,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點對稱,且當時,函數(shù)取得最小值,求的最小值.18.已知函數(shù),(,,)的部分圖象如圖所示,其中點是圖象的一個最高點.(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.19.某校進行學業(yè)水平模擬測試,隨機抽取了名學生的數(shù)學成績(滿分分),繪制頻率分布直方圖,成績不低于分的評定為“優(yōu)秀”.(1)從該校隨機選取一名學生,其數(shù)學成績評定為“優(yōu)秀”的概率;(2)估計該校數(shù)學平均分(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表).20.已知函數(shù)(其中,)的最小正周期為.(1)求的值;(2)如果,且,求的值.21.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)可分別求得,,代入即可得到結(jié)果.【詳解】由成等差數(shù)列得:由成等比數(shù)列得:,又與同號本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,易錯點是忽略等比數(shù)列奇數(shù)項符號相同的特點,從而造成增根.2、A【解析】
等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.3、C【解析】
直接用向量的坐標運算即可得到答案.【詳解】由,.故選:C【點睛】本題考查向量的坐標運算,屬于基礎(chǔ)題.4、B【解析】
取BC中點為M,連接OM,EM找出異面直線夾角為,在三角形中利用邊角關(guān)系得到答案.【詳解】取BC中點為M,連接OM,EM在正方體中為底面的中心,為的中點易知:異面直線與所成角為設(shè)正方體邊長為2,在中:故答案選B【點睛】本題考查了立體幾何里異面直線的夾角,通過平行找到對應(yīng)的角是解題的關(guān)鍵.5、B【解析】
根據(jù)正弦定理,代入數(shù)據(jù)即可?!驹斀狻坑烧叶ɡ?,得:,即,即:解得:選B。【點睛】此題考查正弦定理:,代入數(shù)據(jù)即可,屬于基礎(chǔ)題目。6、C【解析】
將樣本數(shù)據(jù)從小到大排列即可求得中位數(shù),再找出出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù).【詳解】將樣本數(shù)據(jù)從小到大排列:1,2,2,3,3,3,中位數(shù)為,眾數(shù)為3.故選:C.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,屬于基礎(chǔ)題.7、D【解析】
先求得全是正面的概率,用減去這個概率求得至少出現(xiàn)一次反面的概率.【詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【點睛】本小題主要考查古典概型概率計算,考查正難則反的思想,屬于基礎(chǔ)題.8、B【解析】
由頻率分布直方圖求出在這段時間內(nèi)以正常速度通過該處的汽車的頻率,由此能估2000輛車中,在這段時間內(nèi)以正常速度通過該處的汽車約有多少輛.【詳解】由頻率分布直方圖得:在這段時間內(nèi)以正常速度通過該處的汽車的頻率為0.03+0.035+0.02×10=0.85∴估計2000輛車中,在這段時間內(nèi)以正常速度通過該處的汽車約有2000×0.85=1700(輛),故選B.【點睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于中檔題.直方圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為1;(2)組距與直方圖縱坐標的乘積為該組數(shù)據(jù)的頻率;(3)每個矩形的中點橫坐標與該矩形的縱坐標相乘后求和可得平均值;(4)直觀圖左右兩邊面積相等處橫坐標表示中位數(shù).9、C【解析】
利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點向右平行移動個單位長度可得,在將橫坐標伸長到原來的2倍,可得.故選:C【點睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.10、B【解析】
根據(jù)三視圖還原幾何體即可.【詳解】由三視圖可知,該幾何體為一個圓柱內(nèi)切了一個圓錐,圓錐側(cè)面積為,圓柱上底面積為,圓柱側(cè)面積為,.所以選擇B【點睛】本題主要考查了三視圖,根據(jù)三視圖還原幾何體常用的方法有:在正方體或者長方體中切割.屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用兩點間的距離公式求解即可.【詳解】點A(2,1),B(5,﹣1),則|AB|.故答案為:.【點睛】本題考查兩點間的距離公式的應(yīng)用,基本知識的考查.12、【解析】
通過變形可知,累乘計算即得結(jié)論.【詳解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案為:an=n.【點睛】本題考查數(shù)列的通項公式的求法,利用累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.13、【解析】
根據(jù),得到的值,再由余弦定理,得到的值.【詳解】因為,所以,在中,,,由余弦定理得.所以.故答案為:【點睛】本題考查二倍角的余弦公式,余弦定理解三角形,屬于簡單題.14、110【解析】
要使取得最小值,可令,即,對的值進行粗略估算即可得到答案.【詳解】由題知:①.要使①式取得最小值,可令①式等于.即,.又因為,,則當時,,,①式.則當時,,,①式.當或時,①式的值會變大,所以時,取得最小值.故答案為:【點睛】本題主要考查數(shù)列的函數(shù)特征,同時考查了指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),核心素養(yǎng)是考查學生靈活運用知識解決問題的能力,屬于難題.15、4π【解析】
利用三角形面積公式求解,再利用余弦定理求得,進而得到外接圓半徑,再求面積即可.【詳解】由,解得..解得.,解得.∴△ABC外接圓的面積為4π.故答案為:4π.【點睛】本題主要考查了解三角形中正余弦與面積公式的運用,屬于基礎(chǔ)題型.16、【解析】
根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3)1【解析】
(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求解;(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得(3)將化成的形式,依題意有,從而得到,因為當時,函數(shù)取得最小值,所以,兩式相減即可求解.【詳解】(1)由等差數(shù)列、等比數(shù)列的通項公式可得,;(2)因為,所以即,所以又由,得(3)記,則,其中;因為的圖像關(guān)于點對稱,所以①因為當時,函數(shù)取得最小值,所以②②-①得,因為,當,時,取得最小值為0【點睛】本題主要考查了等差數(shù)列、等比數(shù)列的通項公式的求法、三角函數(shù)的化簡以及正弦型函數(shù)圖像的性質(zhì),考查較全面,屬于難題.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和兩個零點計算出和的值,再由最值點以及的的范圍計算的值;(Ⅱ)先根據(jù)(Ⅰ)中解析式將表示出來,然后再利用兩角和的正弦公式計算的值.【詳解】解:(Ⅰ)由函數(shù)最大值為2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【點睛】根據(jù)三角函數(shù)圖象求解析式的步驟:(1)由最值確定的值;(2)由周期確定的值;(3)由最值點或者圖像上的點確定的取值.這里需要注意確定的值時,盡量不要選取平衡位置上的點,這樣容易造成多解的情況.19、(1);(2)該校數(shù)學平均分為.【解析】
(1)計算后兩個矩形的面積之和,可得出結(jié)果;(2)將每個矩形底邊中點值乘以相應(yīng)矩形的面積,再將這些積相加可得出該校數(shù)學平均分.【詳解】(1)從該校隨機選取一名學生,成績不低于分的評定為“優(yōu)秀”的頻率為,所以,數(shù)學成績評定為“優(yōu)秀”的概率為;(2)估計該校數(shù)學平均分.【點睛】本題考查頻率分布直方圖頻率和平均數(shù)的計算,解題時要熟悉頻率和平均數(shù)的計算原則,考查計算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)先根據(jù)二倍角余弦公式化簡,再根據(jù)余弦函數(shù)性質(zhì)求解(2)先求得,再根據(jù)兩角差余弦公式求解【詳解】解:(1)因為.所以,因為,所以.(2)由(1)可知,所以,因為,所以,所以.因為.所以.【點睛】本題考查二倍角余弦公式、兩角差余弦公式以及余弦函數(shù)性質(zhì),考查基本分析求解能力,屬基礎(chǔ)題21、(1);(2).【解析】
(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設(shè)點,再結(jié)合題意可得點N在以為圓心,半徑為的圓R上,再結(jié)合點到直線的距離公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考化學一輪復(fù)習第十一章有機化學基礎(chǔ)第三講烴的含氧衍生物規(guī)范演練含解析新人教版
- 2024高考地理一輪復(fù)習第七章區(qū)域產(chǎn)業(yè)活動第24講工業(yè)區(qū)位因素與工業(yè)地域聯(lián)系教案湘教版
- DB42-T 2341-2024 綜合管廊頂管工程技術(shù)規(guī)程
- 二零二五年版環(huán)保建材板材買賣合同范本3篇
- 2024年海南經(jīng)貿(mào)職業(yè)技術(shù)學院高職單招語文歷年參考題庫含答案解析
- 2024年海南體育職業(yè)技術(shù)學院高職單招語文歷年參考題庫含答案解析
- 危險化學品典型案例課件
- 2024年河南對外經(jīng)濟貿(mào)易職業(yè)學院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 二零二五年城市夜景照明設(shè)施改造與維護服務(wù)合同范本3篇
- 2024年長葛市公費醫(yī)療醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 彈性模量自動生成記錄
- 老年癡呆患者安全護理
- 管理制度醫(yī)療器械質(zhì)量管理制度
- 顱腦損傷的高壓氧治療
- 公司章程模板五篇
- 汽車行走的藝術(shù)學習通超星期末考試答案章節(jié)答案2024年
- 2025屆山東省菏澤市部分重點學校高一上數(shù)學期末統(tǒng)考模擬試題含解析
- 2025屆云南省昆明市祿勸縣第一中學數(shù)學高二上期末復(fù)習檢測試題含解析
- 機械工程師招聘筆試題及解答
- 2023年基礎(chǔ)會計學課后習題及參考答案
- 2024年時事新聞及點評【六篇】
評論
0/150
提交評論