![數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件_第1頁(yè)](http://file4.renrendoc.com/view/f4acc4fde49a7f3f68771cbea34bbbfa/f4acc4fde49a7f3f68771cbea34bbbfa1.gif)
![數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件_第2頁(yè)](http://file4.renrendoc.com/view/f4acc4fde49a7f3f68771cbea34bbbfa/f4acc4fde49a7f3f68771cbea34bbbfa2.gif)
![數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件_第3頁(yè)](http://file4.renrendoc.com/view/f4acc4fde49a7f3f68771cbea34bbbfa/f4acc4fde49a7f3f68771cbea34bbbfa3.gif)
![數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件_第4頁(yè)](http://file4.renrendoc.com/view/f4acc4fde49a7f3f68771cbea34bbbfa/f4acc4fde49a7f3f68771cbea34bbbfa4.gif)
![數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件_第5頁(yè)](http://file4.renrendoc.com/view/f4acc4fde49a7f3f68771cbea34bbbfa/f4acc4fde49a7f3f68771cbea34bbbfa5.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)課件第1頁(yè),共71頁(yè),2023年,2月20日,星期六參數(shù)檢驗(yàn)在總體分布已知情況下,對(duì)分布中未知參數(shù)進(jìn)行檢驗(yàn)。正態(tài)總體參數(shù)的檢驗(yàn)非正態(tài)總體參數(shù)的檢驗(yàn)第2頁(yè),共71頁(yè),2023年,2月20日,星期六非參數(shù)檢驗(yàn)總體分布不明確;總體參數(shù)的假設(shè)條件不成立等;在數(shù)理統(tǒng)計(jì)中把不依賴(lài)于分布的統(tǒng)計(jì)方法統(tǒng)稱(chēng)為非參數(shù)統(tǒng)計(jì)方法。本節(jié)先討論參數(shù)假設(shè)檢驗(yàn)第3頁(yè),共71頁(yè),2023年,2月20日,星期六
1.理解假設(shè)檢驗(yàn)的基本思想和基本步驟;
2.理解假設(shè)檢驗(yàn)的兩類(lèi)錯(cuò)誤及其關(guān)系;
3.熟練掌握總體均值、總體成數(shù)(比率)和總體方差的各種假設(shè)檢驗(yàn)方法;
4.利用P-值進(jìn)行假設(shè)檢驗(yàn)。第4頁(yè),共71頁(yè),2023年,2月20日,星期六
1
假設(shè)檢驗(yàn)中的基本問(wèn)題
1.1
假設(shè)檢驗(yàn)中的小概率原理
1.2
假設(shè)檢驗(yàn)的一些基本概念
1.3
假設(shè)檢驗(yàn)的步驟第5頁(yè),共71頁(yè),2023年,2月20日,星期六1.1假設(shè)檢驗(yàn)中的小概率原理小概率原理:指發(fā)生概率很小的隨機(jī)事件在一次試驗(yàn)中是幾乎不可能發(fā)生的。通常小概率指p<5%。假設(shè)檢驗(yàn)的基本思想是應(yīng)用小概率原理進(jìn)行邏輯推理。例如:某廠產(chǎn)品合格率為99%,從一批(100件)產(chǎn)品中隨機(jī)抽取一件,恰好是次品的概率為1%。隨機(jī)抽取一件是次品幾乎是不可能的,但是這種情況發(fā)生了,我們有理由懷疑該廠的合格率為99%.這時(shí)我們犯錯(cuò)誤的概率是1%。第6頁(yè),共71頁(yè),2023年,2月20日,星期六1.2假設(shè)檢驗(yàn)的一些基本概念1.原假設(shè)和備擇假設(shè)
原假設(shè):用H0表示,也稱(chēng)零假設(shè)、無(wú)差異假設(shè);
備擇假設(shè):用H1表示,是原假設(shè)被拒絕后接受的假設(shè)。
若有證據(jù)證明為H0為真,則H1為假;H0為假,則H1為真。對(duì)于任何一個(gè)假設(shè)檢驗(yàn)問(wèn)題所有可能的結(jié)果都應(yīng)包含在兩個(gè)假設(shè)之內(nèi),非此即彼。第7頁(yè),共71頁(yè),2023年,2月20日,星期六2.檢驗(yàn)統(tǒng)計(jì)量用于假設(shè)檢驗(yàn)問(wèn)題的統(tǒng)計(jì)量稱(chēng)為檢驗(yàn)統(tǒng)計(jì)量。
與參數(shù)估計(jì)相同,需要考慮:
是單總體還是雙總體;總體是否為正態(tài)分布;小樣本還是大樣本;總體方差已知還是未知。第8頁(yè),共71頁(yè),2023年,2月20日,星期六3.顯著性水平用樣本推斷H0是否正確,必有犯錯(cuò)誤的可能。原假設(shè)H0正確,而被我們拒絕,犯這種錯(cuò)誤的概率用表示。把稱(chēng)為假設(shè)檢驗(yàn)中的顯著性水平(Significantlevel),即決策中的風(fēng)險(xiǎn)。顯著性水平就是指當(dāng)原假設(shè)正確時(shí)人們卻把它拒絕了的概率或風(fēng)險(xiǎn)。通常?。?.05或=0.01或=0.001,那么,接受原假設(shè)時(shí)正確的可能性(概率)為:95%,99%,99.9%。第9頁(yè),共71頁(yè),2023年,2月20日,星期六4.接受域與拒絕域接受域:原假設(shè)為真時(shí)允許范圍內(nèi)的變動(dòng),應(yīng)該接受原假設(shè)。拒絕域:當(dāng)原假設(shè)為真時(shí)只有很小的概率出現(xiàn),因而當(dāng)統(tǒng)計(jì)量的結(jié)果落入這一區(qū)域便應(yīng)拒絕原假設(shè),這一區(qū)域便稱(chēng)作拒絕域。第10頁(yè),共71頁(yè),2023年,2月20日,星期六例:=0.05時(shí)的接受域和雙側(cè)拒絕域第11頁(yè),共71頁(yè),2023年,2月20日,星期六5.雙側(cè)檢驗(yàn)與單側(cè)檢驗(yàn)假設(shè)檢驗(yàn)根據(jù)實(shí)際的需要可以分為:雙側(cè)檢驗(yàn)(雙尾):指只強(qiáng)調(diào)差異而不強(qiáng)調(diào)方向性的檢驗(yàn)。單側(cè)檢驗(yàn)(單尾):強(qiáng)調(diào)某一方向性的檢驗(yàn)。左側(cè)檢驗(yàn)右側(cè)檢驗(yàn)第12頁(yè),共71頁(yè),2023年,2月20日,星期六假設(shè)檢驗(yàn)中的單側(cè)檢驗(yàn)示意圖
拒絕域拒絕域
(a)右側(cè)檢驗(yàn)(b)左側(cè)檢驗(yàn)第13頁(yè),共71頁(yè),2023年,2月20日,星期六6.假設(shè)檢驗(yàn)中的兩類(lèi)錯(cuò)誤假設(shè)檢驗(yàn)是依據(jù)樣本提供的信息進(jìn)行推斷的,即由部分來(lái)推斷總體,因而假設(shè)檢驗(yàn)不可能絕對(duì)準(zhǔn)確,是可能犯錯(cuò)誤的。兩類(lèi)錯(cuò)誤:
錯(cuò)誤(I型錯(cuò)誤):H0為真時(shí)卻被拒絕,棄真錯(cuò)誤;
錯(cuò)誤(II型錯(cuò)誤):H0為假時(shí)卻被接受,取偽錯(cuò)誤。
假設(shè)檢驗(yàn)中各種可能結(jié)果的概率:接受H0,拒絕H1拒絕H0,接受H1H0為真
1-(正確決策)(棄真錯(cuò)誤)H0為偽
(取偽錯(cuò)誤)1-(正確決策)第14頁(yè),共71頁(yè),2023年,2月20日,星期六第15頁(yè),共71頁(yè),2023年,2月20日,星期六(1)與是兩個(gè)前提下的概率。即是拒絕原假設(shè)H0時(shí)犯錯(cuò)誤的概率,這時(shí)前提是H0為真;是接受原假設(shè)H0時(shí)犯錯(cuò)誤的概率,這時(shí)前提是H0為偽。所以一般+不等于1。
(2)對(duì)于固定的n,與一般情況下不能同時(shí)減小。對(duì)于固定的n,越小,Z/2越大,從而接受假設(shè)區(qū)間(-Z/2,Z/2)越大,H0就越容易被接受,從而“取偽”的概率就越大;反之亦然。即樣本容量一定時(shí),“棄真”概率和“取偽”概率不能同時(shí)減少,一個(gè)減少,另一個(gè)就增大。
與的關(guān)系第16頁(yè),共71頁(yè),2023年,2月20日,星期六
(3)要想同時(shí)減少與,一個(gè)方法就是要增大樣本容量n。第17頁(yè),共71頁(yè),2023年,2月20日,星期六1.3
假設(shè)檢驗(yàn)的步驟1、建立原假設(shè)和備擇假設(shè);2、確定適當(dāng)?shù)臋z驗(yàn)統(tǒng)計(jì)量;3、指定檢驗(yàn)中的顯著性水平;4、利用顯著性水平根據(jù)檢驗(yàn)統(tǒng)計(jì)量的值建立拒絕原假設(shè)的規(guī)則;5、搜集樣本數(shù)據(jù),計(jì)算檢驗(yàn)統(tǒng)計(jì)量的值;6、作出統(tǒng)計(jì)決策:(兩種方法)(1)將檢驗(yàn)統(tǒng)計(jì)量的值與拒絕規(guī)則所指定的臨界值相比較,確定是否拒絕原假設(shè);(2)由步驟5的檢驗(yàn)統(tǒng)計(jì)量計(jì)算p值,利用p值確定是否拒絕原假設(shè)。第18頁(yè),共71頁(yè),2023年,2月20日,星期六2
總體均值的檢驗(yàn)
2.1Z-檢驗(yàn)2.2T-檢驗(yàn)2.3
配對(duì)樣本的檢驗(yàn)(成對(duì)樣本)第19頁(yè),共71頁(yè),2023年,2月20日,星期六2.1Z-檢驗(yàn)1、當(dāng)總體分布為正態(tài)分布,總體標(biāo)準(zhǔn)差為已知時(shí),檢驗(yàn)原假設(shè)。當(dāng)H0成立時(shí),由于總體;所以樣本均值。從而統(tǒng)計(jì)量為:第20頁(yè),共71頁(yè),2023年,2月20日,星期六
[例1]某市歷年來(lái)對(duì)7歲男孩的統(tǒng)計(jì)資料表明,他們的身高服從均值為1.32米、標(biāo)準(zhǔn)差為0.12米的正態(tài)分布?,F(xiàn)從各個(gè)學(xué)校隨機(jī)抽取25個(gè)7歲男學(xué)生,測(cè)得他們平均身高1.36米,若已知今年全市7歲男孩身高的標(biāo)準(zhǔn)差仍為0.12米,問(wèn)與歷年7歲男孩的身高相比是否有顯著差異(?。?.05)。
解:從題意可知,=1.36米,=1.32米,=0.12米。
(1)建立假設(shè):H0:=1.32,H1:1.32
(2)確定統(tǒng)計(jì)量:
第21頁(yè),共71頁(yè),2023年,2月20日,星期六
(3)Z的分布:Z~N(0,1)
(4)對(duì)給定的=0.05確定臨界值。因?yàn)槭请p側(cè)備擇假設(shè)所以查表時(shí)要注意。因概率表是按雙側(cè)排列的,所以應(yīng)查1-0.05=0.95的值,查得臨界值=1.96。
(5)檢驗(yàn)準(zhǔn)則。|Z|<1.96,接受H0,反之,拒絕H0。
(6)決策:因Z=1.67<1.96;落在了接受域,因此認(rèn)為今年7歲男孩平均身高與歷年7歲男孩平均身高無(wú)顯著差異,即不能拒絕零假設(shè)。
第22頁(yè),共71頁(yè),2023年,2月20日,星期六2.對(duì)來(lái)自?xún)蓚€(gè)正態(tài)總體的兩個(gè)獨(dú)立樣本,已知樣本容量、均值和總體方差分別為和,可用Z檢驗(yàn)法檢驗(yàn)零假設(shè)H0:。
可以證明,若則
所以,在H0成立的前提下,有
第23頁(yè),共71頁(yè),2023年,2月20日,星期六
[例2]由長(zhǎng)期積累的資料知道,甲、乙兩城市20歲男青年的體重都服從正態(tài)分布,并且標(biāo)準(zhǔn)差分別為14.2公斤和10.5公斤,現(xiàn)從甲、乙兩城市各隨機(jī)抽取27名20歲男青年,則測(cè)得平均體重分別為65.4公斤和54.7公斤,問(wèn)甲、乙兩城市20歲男青年平均體重有無(wú)顯著差異(0.05)?
解:從題意可知,公斤,=14.2公斤,=54.7公斤,=10.5公斤;。
(I)建立假設(shè):H0:,
H1:。
第24頁(yè),共71頁(yè),2023年,2月20日,星期六
(2)確定統(tǒng)計(jì)量:
3.15
(3)Z的分布:Z~N(0,1)
(4)對(duì)給定的=0.05確定臨界值。因?yàn)槭请p側(cè)備擇假設(shè)所以查表時(shí)要注意。因概率表是按雙側(cè)排列的,所以應(yīng)查1-0.05=0.95的值,查得臨界值=1.96。
(5)檢驗(yàn)準(zhǔn)則。|Z|1.96,接受H0,反之,拒絕H0。
(6)決策:因Z=3.15>1.96,落在了拒絕域,因此拒絕零假設(shè)。認(rèn)為甲、乙兩城市20歲男青年平均體重有顯著差異。
第25頁(yè),共71頁(yè),2023年,2月20日,星期六2.2T-檢驗(yàn)t檢驗(yàn)法是使用服從t分布的統(tǒng)計(jì)量檢驗(yàn)正態(tài)總體平均值的方法。1.當(dāng)正態(tài)總體標(biāo)準(zhǔn)差未知時(shí),檢驗(yàn)零假設(shè)H0:??梢宰C明,在H0成立的前提下,有:(其中,樣本方差)第26頁(yè),共71頁(yè),2023年,2月20日,星期六注意:如樣本方差定義為則檢驗(yàn)統(tǒng)計(jì)量為第27頁(yè),共71頁(yè),2023年,2月20日,星期六
[例3]某制藥廠試制某種安定神經(jīng)的新藥,給10個(gè)病人試服,結(jié)果各病人增加睡眠量如表7-2所示。
表7-1病人服用新藥增加睡眠量表
試判斷這種新藥對(duì)病人有無(wú)安定神經(jīng)的功效(=0.05)。
解:(1)建立假設(shè)H0:(沒(méi)有功效);
H1:(有功效)(單側(cè)備擇假設(shè))
(2)計(jì)算統(tǒng)計(jì)量:
=1.24=1.53
病人號(hào)碼12345678910增加睡眠(小時(shí))0.7-1.1-0.21.20.13.43.70.81.82.0第28頁(yè),共71頁(yè),2023年,2月20日,星期六
=2.57
(3)確定統(tǒng)計(jì)量分布。本例中,。
(4)對(duì)于給定的顯著性水平0.05,查自由度為9的t分布表,單側(cè)臨界值為1.833。
(5)建立檢驗(yàn)規(guī)則。|t|1.833,接受H0,否則,拒絕H0。
(6)結(jié)論。因?yàn)楸纠齮=2.57﹥1.833,所以,拒絕H0,即,認(rèn)為這種新藥對(duì)病人有安定神經(jīng)的功效。
第29頁(yè),共71頁(yè),2023年,2月20日,星期六
2.若兩個(gè)正態(tài)總體的標(biāo)準(zhǔn)差未知,但相等,可用t檢驗(yàn)來(lái)檢驗(yàn)零假設(shè)H0:。當(dāng)H0成立時(shí),可證明統(tǒng)計(jì)量:
第30頁(yè),共71頁(yè),2023年,2月20日,星期六
[例4]某工業(yè)管理局在體制改革前后,分別調(diào)查了l0個(gè)和12個(gè)企業(yè)的勞動(dòng)生產(chǎn)率情況,得知改革前、后平均勞動(dòng)生產(chǎn)率(元/人)為=2089、=2450,勞動(dòng)生產(chǎn)率的方差分別為=7689;=6850。又知體制改革前、后企業(yè)勞動(dòng)生產(chǎn)率的標(biāo)準(zhǔn)差相等.問(wèn):在顯著性水平0.05下,改革前、后平均勞動(dòng)生產(chǎn)率有無(wú)顯著差異?
解:(1)建立假設(shè)H0:(沒(méi)有差別)。
H1:(有差別)(左單側(cè)備擇假設(shè))
(2)計(jì)算統(tǒng)計(jì)量:
=-9.45第31頁(yè),共71頁(yè),2023年,2月20日,星期六
(3)確定統(tǒng)計(jì)量分布。本例中,。
(4)對(duì)于給定的顯著性水平0.05,查自由度為20的t分布表,左單側(cè)臨界值為-1.725
(5)建立檢驗(yàn)規(guī)則。t小于-1.725,拒絕H0,否則,接受H0。
(6)結(jié)論。因?yàn)楸纠齮=-9.45<-1.725,所以,拒絕H0,即,在顯著性水平0.05下,改革前、后平均勞動(dòng)生產(chǎn)率有顯著差異,改革后的勞動(dòng)生產(chǎn)率高于改革前的勞動(dòng)生產(chǎn)率。
第32頁(yè),共71頁(yè),2023年,2月20日,星期六2.3配對(duì)樣本的t檢驗(yàn)什么是配對(duì)樣本t檢驗(yàn)?配對(duì)樣本是指對(duì)同一樣本進(jìn)行兩次測(cè)試所獲得的兩組數(shù)據(jù),或?qū)蓚€(gè)完全相同的樣本在不同條件下進(jìn)行測(cè)試所得的兩組數(shù)據(jù)。第33頁(yè),共71頁(yè),2023年,2月20日,星期六兩配對(duì)樣本t檢驗(yàn)的前提條件:1.兩樣本應(yīng)該是配對(duì)的。(數(shù)目相同,觀察值的順序不能隨意更改。)2.樣本來(lái)自的兩個(gè)總體應(yīng)該服從正態(tài)分布。第34頁(yè),共71頁(yè),2023年,2月20日,星期六
配對(duì)樣本t檢驗(yàn)的基本問(wèn)題設(shè)樣本和樣本分別來(lái)自總體X和Y,總體均服從正態(tài)分布。樣本為配對(duì)樣本,要求檢驗(yàn)兩總體均值與是否有差異。第35頁(yè),共71頁(yè),2023年,2月20日,星期六解決方法:引入變量(i=1,2,…n),則問(wèn)題轉(zhuǎn)化為單正態(tài)總體參數(shù)(均值)檢驗(yàn)問(wèn)題,檢驗(yàn)檢驗(yàn)統(tǒng)計(jì)量第36頁(yè),共71頁(yè),2023年,2月20日,星期六配對(duì)樣本檢驗(yàn)的特點(diǎn)若使用配對(duì)數(shù)據(jù)的檢驗(yàn)方法適當(dāng),則可以得到更高的檢驗(yàn)功效和更窄的置信區(qū)間。究竟用獨(dú)立樣本還是配對(duì)樣本,要根據(jù)具體的研究對(duì)象,若要考慮的試驗(yàn)單元之間在分配到處理之前所存在的差異很小,那么設(shè)計(jì)獨(dú)立樣本試驗(yàn)更加有效,反之,則配對(duì)樣本更加有效。
第37頁(yè),共71頁(yè),2023年,2月20日,星期六
3總體比例的假設(shè)檢驗(yàn)
3.1
單個(gè)總體比例檢驗(yàn)3.2
兩個(gè)總體比例檢驗(yàn)
第38頁(yè),共71頁(yè),2023年,2月20日,星期六3.1
單個(gè)總體比例檢驗(yàn)
當(dāng)樣本容量n很大,np和n(1-p)兩者都大于5時(shí),二項(xiàng)分布可以用正態(tài)分布來(lái)逼近。在抽樣比例n/N小于0.05的情形下,關(guān)于單個(gè)總體比例的假設(shè)的檢驗(yàn)統(tǒng)計(jì)量為:
其中,是假設(shè)的總體比例,是樣本比例
第39頁(yè),共71頁(yè),2023年,2月20日,星期六這個(gè)檢驗(yàn)統(tǒng)計(jì)量近似服從標(biāo)準(zhǔn)正態(tài)分布。如果抽樣比例n/N很小時(shí),也可以使用下列形式:
第40頁(yè),共71頁(yè),2023年,2月20日,星期六
[例5]某企業(yè)的產(chǎn)品暢銷(xiāo)國(guó)內(nèi)市場(chǎng)。據(jù)以往調(diào)查,購(gòu)買(mǎi)該產(chǎn)品的顧客有50%是30歲以上的男子。該企業(yè)負(fù)責(zé)人關(guān)心這個(gè)比例是否發(fā)生了變化,而無(wú)論是增加還是減少。于是,該企業(yè)委托了一家咨詢(xún)機(jī)構(gòu)進(jìn)行調(diào)查,這家咨詢(xún)機(jī)構(gòu)從眾多的購(gòu)買(mǎi)者中隨機(jī)抽選了400名進(jìn)行調(diào)查,結(jié)果有210名為30歲以上的男子。該廠負(fù)責(zé)人希望在顯著性水平0.05下檢驗(yàn)“50%的顧客是30歲以上的男子”這個(gè)假設(shè)。
解:(1)建立假設(shè)
由題意可知,這是雙側(cè)檢驗(yàn),故建立假設(shè)H0:=50%.
H1:50%
第41頁(yè),共71頁(yè),2023年,2月20日,星期六(2)計(jì)算統(tǒng)計(jì)量
由于樣本容量=400>30,=400×50%=200,
=200,皆大于5,所以可以使用正態(tài)分布進(jìn)行檢驗(yàn)。
(3)Z~N(0,1)
(4)對(duì)應(yīng)于0.05的顯著性水平,雙側(cè)檢驗(yàn)臨界值為1.96。
(5)若Z值不大于1.96,則接受原假設(shè),否則,拒絕之。
(6)本例中,Z=1,處于接受域,故接受“50%的顧客是30歲以上的男子”這個(gè)假設(shè)。第42頁(yè),共71頁(yè),2023年,2月20日,星期六1.檢驗(yàn)兩個(gè)總體比例是否相等的假設(shè)
建立假設(shè)H0:P1=P2
(或P1-P2=0);H1:P1P2(或P1–P20)適當(dāng)?shù)臋z驗(yàn)統(tǒng)計(jì)量是:
由于假設(shè)P1=P2,且真正的P1、P2未知,所以用公共比例的聯(lián)合估計(jì)值來(lái)估計(jì):
其中,x1和x2分別是在兩個(gè)樣本中具有某種特征單位的個(gè)數(shù)。
3.2兩個(gè)總體比例檢驗(yàn)
第43頁(yè),共71頁(yè),2023年,2月20日,星期六因此,檢驗(yàn)統(tǒng)計(jì)量就成為:
根據(jù)經(jīng)驗(yàn),大于5時(shí),統(tǒng)計(jì)量Z近似服從標(biāo)準(zhǔn)正態(tài)分布。
第44頁(yè),共71頁(yè),2023年,2月20日,星期六
[例6]甲、乙兩公司屬于同一行業(yè),有人問(wèn)這兩個(gè)公司的工人是愿意得到特定增加的福利費(fèi),還是愿意得到特定增加的基本工資。在甲公司150名工人的簡(jiǎn)單隨機(jī)樣本中,有75人愿意增加基本工資;在乙公司200名工人的隨機(jī)樣本中,103人愿意增加基本工資。在每個(gè)公司,樣本容量占全部工人數(shù)的比例都不超過(guò)5%。試在=0.01的顯著性水平下,可以判定這兩個(gè)公司中愿意增加基本工資的工人所占的比例不同嗎?解:(1)H0:P1=P2;H1:P1P2
(2)p1=75/150=0.50,p2=103/200=0.515
==0.509
第45頁(yè),共71頁(yè),2023年,2月20日,星期六
=
=-0.278
(3)Z~N(0,1)
(4)=0.01,=2.58
(5)由于小于2.58,所以,接受原假設(shè)H0,可以判定
這兩個(gè)公司中愿意增加基本工資的工人所占的比例相
同。
第46頁(yè),共71頁(yè),2023年,2月20日,星期六
2.檢驗(yàn)兩個(gè)總體比例之差為某一不為零的常數(shù)的假設(shè),即P1–P2=d0。假設(shè)如下:H1:P1-P2=d0;H1:P1-P2d0
適當(dāng)?shù)臋z驗(yàn)統(tǒng)計(jì)量是:
Z近似服從標(biāo)準(zhǔn)正態(tài)分布。
第47頁(yè),共71頁(yè),2023年,2月20日,星期六
[例7]某廠質(zhì)量檢驗(yàn)人員認(rèn)為該廠1車(chē)間的產(chǎn)品一級(jí)品的比例比2車(chē)間產(chǎn)品一級(jí)品的比例至少高5%,現(xiàn)從1車(chē)間和2車(chē)間分別抽取兩個(gè)獨(dú)立隨機(jī)樣本,得到如下數(shù)據(jù)n1=150,其中一級(jí)品數(shù)為113;n2=160,其中一級(jí)品數(shù)為104。試根據(jù)這些數(shù)據(jù)檢驗(yàn)質(zhì)量研究人員的觀點(diǎn)。(設(shè)0.05)
解:(1)H0:P1–P25%,H1:P1-P2﹥5%
(2)p1=113/150=0.753;p2=104/160=0.650
==1.027
第48頁(yè),共71頁(yè),2023年,2月20日,星期六(3)Z~N(0,1)
(4)這是右側(cè)檢驗(yàn),對(duì)于,=1.645
(5)若Z小于1.645,則接受原假設(shè),否則,拒絕原假設(shè)。
(6)由于本例中Z=1.027,小于1.645,所以,接受H0。即不認(rèn)為該廠1車(chē)間的產(chǎn)品一級(jí)品的比例比2車(chē)間產(chǎn)品一級(jí)品的比例至少高5%。
第49頁(yè),共71頁(yè),2023年,2月20日,星期六
4
總體方差的顯著性檢驗(yàn)
4.1
一個(gè)正態(tài)總體方差顯著檢驗(yàn)
4.2
兩個(gè)獨(dú)立樣本正態(tài)總體方差顯著檢驗(yàn)
第50頁(yè),共71頁(yè),2023年,2月20日,星期六4.1一個(gè)正態(tài)總體方差顯著檢驗(yàn)1.總體均值已知時(shí),檢驗(yàn)總體方差是否等于已知常數(shù)時(shí)檢驗(yàn)步驟:建立假設(shè):H0:(已知數(shù)),H1:(或、)。計(jì)算統(tǒng)計(jì)量
第51頁(yè),共71頁(yè),2023年,2月20日,星期六確定統(tǒng)計(jì)量的分布。當(dāng)H0成立,可證明
服從自由度為n的分布。對(duì)給定的顯著性水平,查分布表,得到檢驗(yàn)臨界值。確定判別標(biāo)準(zhǔn)。若﹥或﹤(雙側(cè)備擇假設(shè)),或﹥(右單側(cè))或﹤(左單側(cè))
則拒絕H0;否則,接受H0
。進(jìn)行統(tǒng)計(jì)決策。第52頁(yè),共71頁(yè),2023年,2月20日,星期六
2.總體均值未知時(shí),在檢驗(yàn)總體方差是否等于已知常數(shù)
時(shí),必須通過(guò)樣本,求得樣本平均數(shù),用來(lái)代替總體均值,這時(shí)統(tǒng)計(jì)量
服從自由度為n-1的分布。
有時(shí)候樣本平均數(shù)未知,但已知樣本方差,則可用統(tǒng)計(jì)量
仍然服從自由度為n-1的分布。
第53頁(yè),共71頁(yè),2023年,2月20日,星期六[例8]根據(jù)過(guò)去實(shí)驗(yàn).某產(chǎn)品的某種質(zhì)量指標(biāo)服從正態(tài)分布,其方差=7.5。現(xiàn)在,從這種產(chǎn)品中隨機(jī)抽取25件,測(cè)得樣本方差=10,試判斷產(chǎn)品質(zhì)量變異程度是否增大了(=0.05)
解:(1)建立假設(shè):H0:(已知數(shù)),H1:﹥。
(2)計(jì)算統(tǒng)計(jì)量
(3)確定統(tǒng)計(jì)量的分布。當(dāng)H0成立,可證明
服從自由度df為25-1=24的分布。第54頁(yè),共71頁(yè),2023年,2月20日,星期六(4)對(duì)給定的顯著性水平,查分布表,得到檢驗(yàn)臨界值。因?yàn)槭怯覇蝹?cè)備擇假設(shè),對(duì)應(yīng)于=0.05,df=24,
=36.415
(5)確定判別準(zhǔn)則。若﹥=36.415,則拒絕H0;否則,接受H0。
(6)作結(jié)論。因?yàn)椋?4﹥36.415,所以,拒絕原假設(shè),接受H1,認(rèn)為產(chǎn)品質(zhì)量變異程度增大了。
第55頁(yè),共71頁(yè),2023年,2月20日,星期六通過(guò)比較兩個(gè)樣本方差.從而判斷兩總體方差是否相等的問(wèn)題,即。自然地,應(yīng)用它們的估計(jì)量和的比值來(lái)進(jìn)行判斷。如果比值遠(yuǎn)大于1或遠(yuǎn)小于1,說(shuō)明和之值相差甚大。
為了要具體明確“遠(yuǎn)大于1或小于1”的數(shù)值及其意義,就要研究統(tǒng)計(jì)量
的分布??梢宰C明,在原假設(shè)成立的條件下,
~F(n1-1,n2-1)
即服從第一自由度為n1-1,第二自由度為n2-1的F分布。4.2兩個(gè)獨(dú)立樣本正態(tài)總體方差顯著檢驗(yàn)
第56頁(yè),共71頁(yè),2023年,2月20日,星期六[例9]一次英語(yǔ)考試后,從兩個(gè)學(xué)校分別隨機(jī)抽取試卷n1=10和n2=9,算得的樣本修正方差=236.8;=63.36,問(wèn)兩校這次考試離散程度是否有顯著性差異?(0.10)
解:(1)建立假設(shè)。H0:;H1:
(2)計(jì)算統(tǒng)計(jì)量
(3)確定統(tǒng)計(jì)量的分布。特別注意兩個(gè)自由度的大小。本例中,F(xiàn)~F(9,8)。
第57頁(yè),共71頁(yè),2023年,2月20日,星期六(4)對(duì)于給定的=0.10,查F分布表,確定臨界值:
,
(5)確定檢驗(yàn)準(zhǔn)則。若,則接受H0;
否則,拒絕之。
(6)因?yàn)楸纠蠪=3.7,處在拒絕域,所以拒絕H0,即認(rèn)為兩校這次考試離散程度有顯著性差異。
第58頁(yè),共71頁(yè),2023年,2月20日,星期六[例8]檢驗(yàn)兩校新生學(xué)習(xí)成績(jī)情況。從甲校新生中隨機(jī)抽取11名學(xué)生,得知平均成績(jī)=78.3分,方差=53.14。從乙校新生中抽取11名學(xué)生檢查,其平均成績(jī)=80.0分,方差=60.22。在顯著水平=0.1下,檢驗(yàn)這兩校新生平均成績(jī)有無(wú)顯著差異。
解:兩個(gè)總體均值差異的檢驗(yàn)是在總體標(biāo)準(zhǔn)差已知和未知兩種情況下進(jìn)行的。本例中,總體標(biāo)準(zhǔn)差未知,那么要看兩個(gè)總體標(biāo)準(zhǔn)差是否相等,于是先檢驗(yàn)兩總體的方差有無(wú)顯著差異,然后檢驗(yàn)兩總體的均值有無(wú)顯著差異。
首先,檢驗(yàn)總體方差是否相等:
(1)建立假設(shè)。H0:;H1:
(2)計(jì)算統(tǒng)計(jì)量
第59頁(yè),共71頁(yè),2023年,2月20日,星期六
(3)確定統(tǒng)計(jì)量的分布。本例中,F(xiàn)~F(10,10)。
(4)對(duì)于給定的=0.10,查F分布表,確定臨界值:
,
(5)確定檢驗(yàn)準(zhǔn)則。若,則接受H0;
否則,拒絕之。
(6)因?yàn)楸纠蠪=0.8824,處在接受域,所以接受H0,
即認(rèn)為兩校成績(jī)方差無(wú)顯著差異。
第二步,檢驗(yàn)總體均值:
(1)建立假設(shè)H0:(沒(méi)有差別)。
H1:(有差別)(雙側(cè)備擇假設(shè))
第60頁(yè),共71頁(yè),2023年,2月20日,星期六
(2)計(jì)算統(tǒng)計(jì)量:
=-0.5277
(3)確定統(tǒng)計(jì)量分布。本例中,。
(4)對(duì)于給定的顯著性水平0.10,查自由度為20的t分布表,臨界值為1.725
(5)建立檢驗(yàn)規(guī)則。|t|小于1.725,接受H0,否則,拒絕H0。
(6)結(jié)論。因?yàn)楸纠齶t|=0.5277<1.725,所以,接受H0,即,在顯著性水平0.10下,兩校新生平均成績(jī)無(wú)顯著差異。第61頁(yè),共71頁(yè),2023年,2月20日,星期六
5
假設(shè)檢驗(yàn)中的其他問(wèn)題
5.1區(qū)間估計(jì)與假設(shè)檢驗(yàn)的關(guān)系
5.2
利用P值進(jìn)行決策第62頁(yè),共71頁(yè),2023年,2月20日,星期六參數(shù)估計(jì):根據(jù)樣本所提供的信息,對(duì)未知參數(shù)進(jìn)行估計(jì),即求出置信區(qū)間,并以一定的概率保證總體參數(shù)落在該區(qū)間之內(nèi)。
假設(shè)檢驗(yàn):由臨界值圍成的接受域就是以為中心的置信區(qū)間。越小,置信區(qū)間就越寬,接受域就越大,從而使犯棄真錯(cuò)誤的可能性越小(當(dāng)然,犯納偽錯(cuò)誤的可能性增大)。
對(duì)同一實(shí)例而言,參數(shù)估計(jì)和假設(shè)檢驗(yàn)使用的是同一個(gè)樣本、同一個(gè)統(tǒng)計(jì)量、同一種分布,因此,二者的原理完全一樣,我們可以用構(gòu)造置信區(qū)間的方法解決假設(shè)檢驗(yàn)問(wèn)題。5.1區(qū)間估計(jì)與假設(shè)檢驗(yàn)的關(guān)系第63頁(yè),共71頁(yè),2023年,2月20日,星期六[例9]一種電子元件,要求其使用壽命達(dá)到1000小時(shí)?,F(xiàn)從一批元件中隨機(jī)抽取49件,測(cè)得其平均壽命為950小時(shí)。已知該元件壽命服從標(biāo)準(zhǔn)差為100小時(shí)的正態(tài)分布,試在顯著性水平0.05下確定在批元件是否合格。
解:使用壽命高于規(guī)定自然為合格品,所以我們更關(guān)心置信區(qū)間的下限值。這是一個(gè)左單側(cè)檢驗(yàn)問(wèn)題。
H0:H1:
當(dāng)=0.05時(shí),=1.645
置信區(qū)間的下限為
如果樣本均值976.5,則接受原假設(shè),可以認(rèn)為這批元件的平均壽命達(dá)到1000小時(shí),否則,應(yīng)拒絕原假設(shè)。本例中,,所以,應(yīng)該拒絕原假設(shè),認(rèn)為這批元件沒(méi)有達(dá)到合格標(biāo)準(zhǔn)。第64頁(yè),共71頁(yè),2023年,2月20日,星期六
置信區(qū)間的允許誤差
(單側(cè)檢驗(yàn)中為),于是可以把利用置信區(qū)間進(jìn)行假設(shè)檢驗(yàn)的決策準(zhǔn)則概況為:
若接受H0;若拒
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年家電項(xiàng)目可行性研究報(bào)告
- 2023-2029年中國(guó)理血藥行業(yè)市場(chǎng)發(fā)展監(jiān)測(cè)及市場(chǎng)深度研究報(bào)告
- 疫情背景下的職業(yè)健康安全教育培訓(xùn)新思路
- 波箱油項(xiàng)目安全風(fēng)險(xiǎn)評(píng)價(jià)報(bào)告
- 知識(shí)產(chǎn)權(quán)侵權(quán)訴訟中的證據(jù)收集與運(yùn)用
- 木片加工行業(yè)影響因素分析
- 東北漫川漫崗區(qū)極端降水與土壤水力侵蝕特征研究
- 甘露糖修飾脂質(zhì)體包裝ASFV CP204L基因mRNA在小鼠體內(nèi)的免疫反應(yīng)評(píng)估
- 資源編排視角下國(guó)檢集團(tuán)連續(xù)并購(gòu)的價(jià)值創(chuàng)造研究
- 貴陽(yáng)某醫(yī)院制冷與新風(fēng)系統(tǒng)耦合配置研究
- 工程類(lèi)《煤礦設(shè)備安裝工程施工規(guī)范》貫宣
- 比亞迪新能源汽車(chē)遠(yuǎn)程診斷與故障預(yù)警
- 胚胎植入前遺傳學(xué)診斷
- 2024屆甘肅省蘭州市甘肅一中高一上數(shù)學(xué)期末聯(lián)考試題含解析
- 初中體育籃球雙手胸前傳接球教案
- 物流基礎(chǔ)培訓(xùn)資料
- 雷達(dá)原理-三-雷達(dá)接收機(jī)
- 公司股東合作協(xié)議書(shū)標(biāo)準(zhǔn)樣本(2篇)
- 內(nèi)蒙古自治區(qū)關(guān)于機(jī)關(guān)和全額撥款事業(yè)單位工作人員病事假工資待遇
- 探索者三維建筑結(jié)構(gòu)建模設(shè)計(jì)軟件說(shuō)明書(shū)
- C++反匯編與逆向分析技術(shù)揭秘(第2版)
評(píng)論
0/150
提交評(píng)論