版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第2023佛山中考數(shù)學考點梳理
佛山中考數(shù)學考點梳理
一、代數(shù)式
1.概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
2.代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關系,計算得出的結(jié)果。
二、整式
單項式和多項式統(tǒng)稱為整式。
1.單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。
2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。
3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2.多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。
2)多項式的次數(shù):多項式中,次數(shù)的項的次數(shù),就是這個多項式的次數(shù)。
3.多項式的排列:
1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
三、整式的運算
1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關,與字母排列的順序也無關。
2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3.整式的加減:有括號的先算括號里面的,然后再合并同類項。
4.冪的運算:
5.整式的乘法:
1)單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。
2)單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。
3)多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
6.整式的除法
1)單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
2)多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。
四、因式分解:把一個多項式化成幾個整式的積的形式
1)提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。取各項系數(shù)的公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。
2)公式法:A.平方差公式;B.完全平方公式
中考數(shù)學考點梳理
一、考點分析考點一、點和圓的位置關系
設⊙O的半徑是r,點P到圓心O的距離為d,則有:
d
d=r點P在⊙O上;
dr點P在⊙O外。
考點二、過三點的圓
1、過三點的圓
不在同一直線上的三個點確定一個圓。
2、三角形的外接圓
經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓。
3、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。
4、圓內(nèi)接四邊形性質(zhì)(四點共圓的判定條件)
圓內(nèi)接四邊形對角互補。
考點三、直線與圓的位置關系
直線和圓有三種位置關系,具體如下:
(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;
(2)相切:直線和圓有公共點時,叫做直線和圓相切,這時直線叫做圓的切線,
(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:
直線l與⊙O相交d
直線l與⊙O相切d=r;
直線l與⊙O相離d
考點四、圓內(nèi)接四邊形
圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補,外角等于它的內(nèi)對角。
1、切線的判定定理:過半徑外端且垂直于半徑的直線是切線;
兩個條件:過半徑外端且垂直半徑,二者缺一不可
2、性質(zhì)定理:切線垂直于過切點的半徑(如上圖)
推論1:過圓心垂直于切線的直線_切點。
推論2:過切點垂直于切線的直線_圓心。
以上三個定理及推論也稱二推一定理:
即:①過圓心;②過切點;③垂直切線,三個條件中知道其中兩個條件就能推出最后一個。
考點五、切線長定理
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心連線平分兩條切線的夾角。
考點六、三角形的內(nèi)切圓和外接圓
1、三角形的內(nèi)切圓
與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。
2、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心。
考點七、弧長和扇形面積
中考數(shù)學考點
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k0時,直線必通過一、三象限,y隨x的增大而增大;
當k0時,直線必通過二、四象限,y隨x的增大而減小。
當b0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應用:
1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。
六
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年湖南株洲市茶陵縣洣水投資發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 2025年廣東深圳市龍崗區(qū)城市建設投資集團有限公司招聘筆試參考題庫附帶答案詳解
- 2025年寧波舜工集團有限公司招聘筆試參考題庫含答案解析
- 2025年福建福州長樂國際機場招聘筆試參考題庫含答案解析
- 二零二五年度生態(tài)保護區(qū)土地使用權(quán)租賃與房屋租賃合同3篇
- 二零二五年度智能交通設施建設與裝修合同樣本3篇
- 二零二五年度專業(yè)倉儲倉庫庫房租賃合同范本5篇
- 二零二五年度環(huán)??萍?綠色建筑技術入股合同范本3篇
- 2024年高檔住宅區(qū)裝修個人勞務分包合同
- 二零二五年度深圳人工智能服務合同2篇
- 防造假管理程序文件
- 高中化學名師工作室三年發(fā)展規(guī)劃
- 同濟大學信紙
- 高處作業(yè)安全培訓課件-
- 國家義務教育質(zhì)量監(jiān)測科學四年級創(chuàng)新作業(yè)測試卷【附答案】
- 硫磺安全技術說明書MSDS
- 職中英語期末考試質(zhì)量分析
- 過盈配合壓裝力計算
- 先天性肌性斜頸的康復
- GB/T 37518-2019代理報關服務規(guī)范
- GB/T 34370.1-2017游樂設施無損檢測第1部分:總則
評論
0/150
提交評論