星火專項答案1 A提示理解初等函數(shù)的定義分段一般情況不是可表_第1頁
星火專項答案1 A提示理解初等函數(shù)的定義分段一般情況不是可表_第2頁
星火專項答案1 A提示理解初等函數(shù)的定義分段一般情況不是可表_第3頁
星火專項答案1 A提示理解初等函數(shù)的定義分段一般情況不是可表_第4頁
星火專項答案1 A提示理解初等函數(shù)的定義分段一般情況不是可表_第5頁
已閱讀5頁,還剩85頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第一一、單項選x1A】提示:理解初等函數(shù)的定義,分段函數(shù)一般情況不是初等函數(shù),Cyexlnx,Dyx2C】提示:兩個函數(shù)相同有三個原則,定義域相同、值域相同、對應(yīng)法則相同,A、B、D3Dx2xx2x不是奇、偶函數(shù)所以復(fù)合以后也不是也奇、偶函數(shù),因為sinx是有界函數(shù),所以其函數(shù)是有界函數(shù)1x20x14D】提示x2

x 5B】提示0x112x11

1x110x23x7A】提示|sinx|1f(sinx8Dx51且x5x6且x4且x9Bf(x1)(x1)21

f(x)x2

f(1)

(x1)2

1f()(1 1

f(x)(1

2x211【D】提示:圖形關(guān)于y軸對稱,就是函數(shù)是否為偶函數(shù),顯然函數(shù)y 為偶函數(shù),212B13B14Ax1

1而

01

sin,limx 15B】提示極限存在與否和函數(shù)在此點的定義無關(guān),而limf(x)16D17D】提示記住無窮小量比較的四個結(jié)論

sin(2xx2x

2xx2x

lim

0

e2x

lim

2

e2x

lim

12x02

x0

x0

e2x

lim2x

x0 19B20B21B22【D】提示記住無窮小量比較的四個結(jié)論,用所給的兩個函數(shù)相除,用法則和無窮小量等價替換limxsinxlim1cosx0 x

x21

x2123D

x

ex1=,

x

ex124D25C1726D27D28D30B2531C32B33A34D36D37C38B39D42C43A44C45D47A】k

limx111150【C】利用法則,f(0)

xln23xln1

ln352Af(x57A59C62B69C1x

:f(x)x

f(g(x))g(x)1x2y3、1:

f(x)4y1(125x4

1 x;[1,x2xx136 :用無窮小量等價替換 法28x0:提示0e2x19先求出f(xx10、a,1a。提示0xa1,且0xa11(,0f((x))e2x)1x,12x|x3且x2x30且x3

1

1且1x211015、-3。提示:一定是016、4

"17、a6。一定是0

"182

。yarctanx019、-10。提示:一定是0

"1220 。利用無窮小量等價替換和第一重要極1222

023、124、3.121121 法則f(0)lim21 26、1

28、0,-2f(xx0x1x0是可去間斷點且limf(x)30a1/eb

31、-1,2f(x 三、計n21

2n

12 n2n3n22n

n32 、 n

n nnn nn1

1111 1n2、 2

n(n 222nn22

n

n

n

4lim

0,lim

n

n22n

n4n

5

lima0nnnn2n2nn2n2n2

n2n2n2n2n2n2

1, 1111nn2

1111n所以,由定理可

n26

f(x)lim(x1)1,

f(x)lim(x1)

7

x xxxx

x0xlim

=xx

(-1)1

lim

=lim1xx

x≠xx

xxx

xxx8lim(x2x

limx2

(limx)2

19

x22xx2x

lim(x22x

10

x22x

(x3)(x

(x3)

x2x

x1(x2)(x

x1(x 11

x

x1(1x)(1

12

3x22x

2 x x3x2x3x2

21 13

3x32x

32 x x2x3x2

14

2x

21x1x15

2x

2x1

x16

ax=

au=17

f(x)

31/x1

1

x031/x31/xf(x)

131/

1

x031/x

x0131/

f(x)2

f ,

limf(xx22x18 因為

2xk)

x

(x3)40

lim(x22xk)3223k3所 3k0即k19

f(xh)f(x)h

xhh

x xhxh 220(1)

f(x)lim(x1)1,

f(x)

x23x

x3所 limf(x)x23x

13 x

f(x)

x3

1

f(x)limx121limsin

lim2sinxcosx2limsin22limxa=0

sin5(x

=5

sin5(xa)5(x23lim

limsin(x)

1

2sin2

1

x124

=

= x02 121225

x2sinlim

sin2x21lim2x21

sinx

2x2x21

x

x26lim2n

3sin12x12x327lim1

x2

x128lim(12x

1lim(12x)2x

1x

1 e29limx

=

1

xx

x2

x 1x30

lim1

xx

x1

12xxxx

x

x x x231、 2

xx

11x 1

1ex1

1

x11 x x x32x

x1

33、lim1

lim1

12n(134

2x3

0x3x435limx0sin

=36

limex0,而sin

limexsinx37

x2x21

111111x38

x1

1ln[lim(1x

limsin1sin

1x02 39、lim(1sinx

lim(1sinx)sinx2

lim(1sinx)sinx

e240lim(sin(x1)

)

x2

x1 2x1 41

lim(x

lim(1

2)

lim[(11)t]2(1

x

x

t 42

x

)xlim[(1

x

)3a(1

x

)3a]3ae3a

alnxc43

1

cxx

lim1

cxx

e2c,e2c

cln xxc

x1c

c144

x x2sin2x

lim1 x x45

x(1sinx)2xf(x)ab3,

f(x)2ab3

a46、

f

f(x)limx

f(x)limx0

limf(x)(3)limf(x)

f(0)f(x)

x047、

f

(2)limf(x)x2

k0

f(xx0x2

f(x x1x1

=lim(xx

x

x1

f

x1

f

limx1

f

x1

f(x

f

,則f(xx1

f

,

f(x)limsin2xlim2sin2x2

f(x)lim(x1)

所以

f(x)

f(x

x0

f

1 因此f(xx0

f

1,

f(x)= x1x

x1

f(x52

)

exln(1x2x義域為[0,22,,故函數(shù)f(x的連續(xù)域為[0,22,53、令

f(x)2xx2,則由初等函數(shù)的連續(xù)性知:

f(x[1,1上連續(xù)。又

f(1)102f(110根據(jù)零點定理,在(1,1f(0222xx2在xsin(54 因為 為初等函數(shù),又在點1及其附近有定義,故在點-1處連續(xù)。因此,

2xsin( 21sin(

sinxsin55、原式=limcos limsinx 1x1xsin(x3)(56、原式=1

x

157 因

limax2bxc

x

所以a

x

xax2bxaxb

xaxbx258lim

(b1)xx21

2

1

x2所以要使極限存在且值為1必須a 59 因

f

,limf(x)lim1xxe-

,

f(x)lim(xsin

b)11

所以要使f(xx0處連續(xù),limf(xlimf(xf(0

a

f(x在(,

f(xx0f(0)a,limf(x)lim(3x22xa)a,

f(x)

sina2x

a所以當(dāng)limf(x)limf(x)f(0),即a2a時,f(x)在(,)內(nèi)連續(xù)。故a a

第二一、單項先1B2B】同上可知1f(0)12

f(0)3A】同上可知

f(x)f(x)2f(0)x4C

1所以tan1可得x1x5B

ex 122226Bdyf(x27Ddy

f(ex)dex

f(ex8C2ex22f(0)

ex2

lim

x

x0x9C10D8ylimy(xy(0)limx(x1)(x2)(x3)

x

11Dy1lnxy 12D】先判斷連續(xù)性limf(x)0

f(0f(xx0xsin1再同8題方法f(0)lim limsin1不存在,所以不可導(dǎo) 13【A】同12題,先判斷連續(xù)性limx2sin10limax2bx f(xx0x2sin1

再判斷可導(dǎo)性f(0)lim 0

f(0)

ax2bxbf(0

f

即b0a14Aysinxtancos15Afx

先求f(xf(x)1再求導(dǎo)xe

(x)x16A】復(fù)合函數(shù)求微分d

1(ex)2sin1sin1cos2

sinsin18Bsin19Dycosxcotsin20C12yxx021C20yx1x022A21yx

x11221223Cdy

2lgedx

x24Cy3sin2xcosx 25Bdy3a3xln26C22x227B】利用微分的定義可知,B28Cycosxysinxycosy(4)sinx所以y(10)y(2*42)y(2)sin29B13f(xx1x0又f(x)11

x0xx

f(x)0

f(xf(xx0

f(x)1limf(x)2f(xx130A1213f(xx0g(xx031C30limxsin xxsin

0

f(0)f(0)

xx1

limsin x

1x232【C】f(1)lim 2,f(1)

lin 2

x

x33B】A

(x)

1x3x0x03B:g(x)

(x

x0g(0)Climh(x)1limh(x)1h(xx0h(x)

x,

h(x)=2

h(x)

x

h(xx0Dlimk(x)3limk(x)3,所以k(xx0 34A35C】隱函數(shù)求微分:先求導(dǎo)數(shù)eyyyxy0yx

yx(1xey36B31

f(x)2

f(xf(xx0f(x)

x

f(x)0

f(x)

x

f(xx0處不可導(dǎo)21:2f

)23

f

)32

:同上,原式2f4(t1f(0:同上,原式(t1f5、1:同上,原式=f(0)61,1:

f(x)1

f(x)

f(0)k2k當(dāng)kf(0)

f(x)f(0)

11

x

x0xf(0)

x210

f 當(dāng)kf(0)

2xex12xx21f(0)

f(xx07、 求出左邊導(dǎo)數(shù):3x2f(x3)1f(x3)1f(x)3x 8

df(axb)

f(axb)aag(ax09、 由f(x) 5得x024 1 f(x)

f(4)25ff

)

f(25)10x

設(shè)曲線上的點為(x,1)yxx xx0y

x20x2

xx2y0x01y0yx11y

tt2x5yy83(x

2xy

y1ex,y(0)

y113y

y(x1)exy(0)1y141x22

f(tan2x)1tan2x,f(x)1;f(x) f(x)dxxx2

cf(0)

c f(x)x 153x

ysin(3lnx),y3cos(3ln

f(lnx)f(lnx)f(lnx)

f(lnxf(lnx)x

f(lnx)x

f(ln17、

f1)

1

f(x)

1

(x)

18a:f(x0)f(x0)19

x2

f(x)2e2x,f(lnx)2e2lnxxx20、0f(x)x

xx

f(xx0f(x)

xx

f(x)

f(x)

f(0)212xln

:y2xln2

y2x(ln2)222、1 lnxdxlnxdlnx1ln2x:d1ln2x2

lnxdx23、2e2xf

:y2e2xf(e2x24、xx(1lnx)dx:冪指函數(shù)求導(dǎo)yeln ,yxx(1ln 25、2ncos(2x 2

y2sin2x,y4cos2x,y8sin2x,y(4)16cos:y(n)2ncos(2xn2三、計算 1、由 (x2 4,即拋物線 x2在

處的切線斜率為4y44(x

4xy40

y41(x2),

x4y1832、在x0處 ,即 在點x033x0

f(x)1,limf(x)lim(2x1)

limf(x)1

f(xx0

f(0)

f(x)f(0)lim11f(0)

f(x)f(0)lim(2x1)1

x

x

xf(0f(0)f(0)f(xx0x1

limf(x)lim(2x1)3,limf(x)

limf(x)

f(xx1f(1)

f(x)f(1) (2x

f(x)f (x22)f(1)

x

x f(1f(1f(xx1f(12x2

limf(x)

,limf(x)lim(x3)

limf(x)limf(x),即limf 不存在,因此f(x)在點x2處不連續(xù),從而在點x2 24、f(x(x3x2cosxx2(cosx)2

x) 3x22xcosx 3

f

4ln22ln5、y3

y

ydydu10u92x20x(3x2du6y

1

ysinuu

1

復(fù)合而成。因為dy du2(1x2)(2x)22(1x2 dy 2(1x2)2(1x2) (1x2

(1x2

(1x2

(1x2

cos17dylntanx)

tan

(tanx)

tan

sec2x

sin8

sinx

1sinexsin

1

sinex

11

sin ex x

xx 9、lnyxlnln

ylnlnxy

ln

y(ln)x10lnysinxln

x

1ycosxlnxsinx 于 yy(cosxlnxsinx)xsinx(cosxlnxsinx 11x

lny1[ln(x1)ln(x2)ln(x3)ln(x4)]1y1 所 y

2 2 (x1)( (x1)(x (x12、dy=f(x

=2arcsin1 x

(1

(1

x

dx13

y1.013131.03030110.030301,dy x30.0114、

dyydx15y2axby2ay16

yaeaxya2eaxya3eax,L,y(n)eax)(n)aneax17

y

1

,y

(1

,y

12(1x)3

yn)1)n1(n(1即[ln(1x)](n)1)n1(n(1

(規(guī)定01)1x18、1x

d2ydx

3-19

(1x2)2y2yyxy2xx2yy2pypyx

(y

yexy11xexy

yy(x(1,1xy221、兩邊對x

2xy

y2xyx222

yex

yy

y

23、兩邊取對數(shù)2xlny

兩邊求 2lny

2xy=y/lnx+ 把x

=1

=x 24ye

y',y'

e1xey

y"(y')'

e1

)'

e2y(2xey)(1xey)325、邊求導(dǎo),yexyxexy(1 即,yexy(y1)(yyexy(1yyy1y1

y

ex1xex

ex2x0y1,代入(1)y(0)

x0

y(0e代入(2) y(0)2e(126xeyy'y

故y' k

yeyyey

1ee

y

y27dy28

yexy2xycos(x2y)2yxexyx2cos(x2f(x)lim(abx)

f(x)limex因為f(xx0可導(dǎo),所以f(xx0于是

f(x)

f(x)

f(0)af(0)

f(x)f a x

f(x)f

ex

exf(0)

因為f(xx0yxyy

f(0)

b129x

12x2

,解得

yx

1

x230

f(xxy2f(xxfy)x2x2y

f(x)y2f/(x) 2xy2f(x)解得dy 31、解對方程兩邊求微分,并根據(jù)一階微分形式不變性可得exyydxxdy所 dy

(exy2x)12(exy1232

2ycosy2dysinx 所 dy

x sin42xsin4 f0

fxlnb,limf(x)0

f(xx0處連續(xù),∴b=1f

limsinx

f limlnax

∴a=

x34

f(00)1,f(00)b,b1

f/(0)a,f/(0)2,a235、 因

f(x)

f(x)

f

f(xx0因

f(xx036、limf(x)limx2 limf(x)lim(axb)a

因為f(x)在點x1連續(xù),所以ab 即b1f(1)

f(x)f(1)limaxb1limax(1a)1

x

x

x因為f(x)在點x1可導(dǎo),所以a 于是,b1a37、

f

f(x)lim(aarcsinx)f(xx0

a(1 又f(x)

f(x)f f(x)

f(x)f(0)

(xb

x38limf(xa

f

,而f(xx0a

f(x)f(0)lim1arctgbx1b

f(x)f(0) x b1

39

f(xx1limf(xlimf(x),即1bln(1

又由f(xx11

(1(2a1,bln2

tcostsin sin d2

2t

sinttcos40

dx(1t2)

4t41dy

1 1t2

d2y

ddy

1

1t

dt 1t

1tx1t

sin42y

tcostsindy 2t

sinttcost43

f

d2y

f'(e

)e

4te2x

''(ex44

f(x

f(xf(x。所f(1)limf(1x)f(1)limf(1x)f

f(1xf(1)4x

所以曲線yf(x)在(1,2)處的切線方程為y 45、由limf(2)f(2 得f(2)limf(2x)f(2)2limf(2)f(2x)

f

yf(x在點(3,f

yf(3)2(xa46、由f(xx0limf(xa

f(x,即

a2又由f(xx0

而f(00,f(0bb047、x1

3y42

y1x22xy23y46x求導(dǎo)數(shù),可得2x2y24xyy12y3yx1

y(1,

x1y1y(所以,在點(1,1)處,切線方程為x4y 在點(11x4y5048

x米,方體的體積為Vx3。如果正方體的棱長增加x米,方體

V(xx)3x33x2x3x(x)2將x10,x0.1代入上式,可 V30.301m3第三章答一、單項選1【D】驗證滿足爾定理的三個條Alnx在[-1,0]上無意義Bex兩個端點的函數(shù)值不相等,即e1eCxx0D:1x2復(fù)合爾定理的三個條件2【A】日定理的結(jié)論:f()

f(3)f31即

1 得(1x)221

x

21 223【D】爾定理的結(jié)論f()0即f(x)323323

解得x24C34x10x145【C】同1題,知C不滿足爾定理,因為f(x)

12x126B】在(,f0Byex07B】在(,f0Byex08By0y4x10(x0)得1x1

12

9BBBCB910BDB】y y(0)2所以切線方程為y12xA】y(x y(x2)ex令y0得x2且在其附近,y變號,所以(2,2e216By3(x

y6(x1y0x1y變號,所以(1,117Af(x)x2x

f(06得切線方程y16xy0x1A618【C】由爾定理可知C正確19CC20BB21C((xf(x))0x0,(x)f(xx0有(xf(x)(0f(0)0,所以(x

f(xC22C10C23A

y

1x(1x2

024BB25DD26AA27【C】y x0是駐點且在其附近不變號,所以x0不是極值點,但存在切線y18xx0且其附近變號,所以(0,028By

2x y(1)2,所以法線斜率是1y21(x2x 29D】ey*ysinxey*cosxy0x0y1yek30Cx700y130xx700y130*700130*0.9(x700)91000117(xC二、填空1、202、10

”左=a=2”利用必達法則可知等于1x1x13

lim21

21x14、0f(x005、-1/ln2:y2xx2xln20x

1ln

,x

1ln

y0,x

1ln

y0x

1ln6、(3/2,+y4x36x22x22x3)0x327、(,1)(1

f(x)(x1)22(x

x1x1f(x0遞增38、

:yx3

3,y

x3

2x3

23

x1

x3x9、- 9/2。3ab①,y3ax22bx,y6ax2b得6a2b3x,a3,b210、(0,13

,11

24x12x(3xx0

x3

都變號,拐點為(0,123

1111、3:y12x32axb;y6x y(1)0得a3,又y(1)0得b122xy

:y1

y(0)

y113、-1,-1,1f(1)0g(1)0得a1bcf(1g(1可得b1c14y

3切線方程y83(x:

t15、-1:Qp)1200Epp(p(16

:Q(p)abebp,

Q(

17、8000RQppQ=10000Rp18、y4x 1f(1)2

:y24(x三、計算1lim1cos2x

22

3

3x22x1x

x

x13xtanx

tanx

sec2x 3、

x2sin

x04 lim1

1lim1x

x1ln

1x x11

x111 limcotx1limcos

x05

x

sinlimxcosxsinx0limxsinx1limsinx 2

2e ex(ex 6 原式

=lim 7lim1

x

xx

exex1

xex

=

x0e

8

exex

=

exe

exe

sin2

sin

x02cos9

f(xD;⑵

f(x)6x26x12 ⑶令f

x1

x2x(,1f00f↗↘↗⑸從表中易知x2是極大值點,極大值為f f(x)的單調(diào)增加區(qū)間是 和(1,);單調(diào)減少區(qū)間是(2,1)10

f(x在

5(x33x5(x33x1

,令f

x1x1x1f0f↗↘33↗⑷x1

f

;x1f(133411、解

f(x)3x233(x1)(x

(2)

f(x0x1x

f(x)

f(x的極大值;而

為f(x12

f(x1x)ex,令

f(x0x1f(0)0,f(1)1,f(2)212。因為021,所以f(2) 。因此f(1)1

f(x e

f(x在[0,2]13

f(xx1)exf(xx2)ex

f(x0x1

f(x0得x2x-f--0+f-0++f可見:

f(xx1

f(1) 2)x2[或(2,

單調(diào)遞增區(qū)間是 ;單調(diào)遞減區(qū)間是下凹區(qū)間是 ,上凹區(qū)間是 14、D(f0y/=xx1,x2

+2bx+a2b10,14b 2解得:a2,b3

16y/=f/(x)

23

1x+x3

1(x1)x2)3x12y-0+0-y↘↗↘f(x的單增區(qū)間是(1,2)

f(x)4

,f(x)12x212x12(x令f(x0

x0

x1x01f+0-0+f10在

1

8 5

2

1104x16

yx3

(x1)x3 x3 x x 3 3

x1x0yx0x1為把定義域

x(,0(0,14(1,4f0+f(由表可知,曲線的上凸區(qū)間為0

,下凸區(qū)間為(01

;拐點為 1 17( ,(2,(03(,0),18( ,0 1, ( , 011 , 2( , 2 218xeyy'yxy0

y'

ey

k

yeyyey

1e斜率為e 所以切線方程

y

y19、方程sinyxey0xycosyeyy

exeycos

ky20xa2xxaVa

,x0

V(a2x)(aV0xa

x22V24x8aa

Va4a0xa66形的邊長為時,可使得無蓋方盒容積最大。6L(x)R(xC(x)L(x0x250

L(x)5由于L(x0.020

22 銷售量為Q時,總收益

R(P)QP總利潤為L(P)R(P)C(Q)(1000100P)P 2L(P1300200P0P0

L(P200P06.5C(x) 0.5x236x 22、平均成本C(x) 0.5x36 C(x)0.5C(x0.598000,得x140,

C(x)196000,所以C/p>

C(900)1100

9002

C(900)C(900)1775 9001000CC(1000)C(900)19331775 1000 ⑶由于邊際成本函數(shù)為C(Q)

9011.5,9001.97,24C(x)0.02x220x2000C(x)0.04xR(x)

L(x)R(x)C(x)0.02x240x

L(x)0.04x40 L(x)

x1000100025、L(x)300x1.5x2 L(x)3003x。令L(x)3003x0,得唯一的駐點xL(x)30x100x100(件L(10026dQ100

PdQ Q

4001當(dāng) 時,P1

P2

1P3P

L(p)(12008p)(p2)(25005Q)=8p21256p

p

,L(78.5)

L(78.5)2899828x80,總利潤為L(x2010(100x)(x80L(x)10(2x180)x90

x90100x100901029RpQ(3ppp1

R(P)(P1)(P3)(Pp1R

p1R

pp1maxR1(百元30 S2rhr22r2

h

,y2ca5crr y/2ca10cr

得唯一駐點r

3 r 1ra3y取得5 31rhs2r22rh且容積為V的圓柱形罐頭筒的體積為V=r2h,因而要做的圓柱形罐頭筒,所用材料最省即應(yīng)使得圓柱s2r22rhs2r2r

s4rr

0r

s44VsVrV

0r3r3V

是最小值點,所以設(shè)計圓的半徑r

,高為h VVVV32

f(x)

x0

f(x在[0x上連續(xù),在

內(nèi)可導(dǎo)。根據(jù)

f(x)f(0)f()(x0),0f(0)0,f

ln(1x)

x1x0x

1

1

x

1

ln(1x)x,(x33f(x)

31

f(x[1f(x)

111(xxx xx

f(x0,所以在[1)

xxf(x單調(diào)增加,因此當(dāng)x1時,

f(xf(10,即xx (31)0,所以xxx

3x

(x134 解:由yx

1 0 ab

(1)

3a2bc

6a2b

a3,b7535:由需求函數(shù)得P R(x)Px75xx25x1x L(x)RC28x222x100

x82530x82530P75

(百元)30150036y

2x(1x)(1

(2(1

,駐點為0由于y(1)1, 2所以最小值 ,最大值 1 37、設(shè)墻壁的寬為x米,則長為202x米,面 Sx(202x)20x S204x S0x5, ,故S在x5處有極大值38、設(shè)公司降x元,利潤L(20 (200005000x),0 Lx8000010000x0x8Lxx(80Lx8L(8720000L(0400000L(20

872000039、需求價格彈性函數(shù)為

EQdQP dP

10(2)P5

2P51%2%1%,則其需求量將2%.4050 300500.01502

=1500025

_

14475

300x0.01x2

300

2x50241x批進貨,則進貨費=150

庫存費

總費用=150x

x

y150令y0,得x x5為唯一駐點542EQdQP dP

50

P5050P50

>1,P>2525<P<50增加企業(yè)收入,宜采取降價措施

<10P<2525<P<50能增加企業(yè)收入,宜采取提價措施第四一、單項選1DD2CC3B4C5B6A7A1f(x)g(xcA8C9Bf(xsinx判斷g(x)f(xg(xf(x所以,可知B條件10C

1sin2

f(x1x兩邊積分f(xx222

c11B】利用湊微分:原式1f(2x)d2x1F(2xc 12D】利用湊微分:原式f(cosx)dcosxF(cosxc13Df(xf(x)(ex)exxexdxxdexxexexd(x)ex(x1c14B11f(ex)dexF(exC15Df(x)e2x16Cxdf(x)xf(xf(x)dxxf(xf(xc17【A】f(x)(1sinx)cos f(x)sinx 18Bf(x)e

ex

f(x) x19Cxsinx2dx1sinx2dx21cosx2c 20AA21【D】利用積分,可知D正確22C9D23D21D24B】利用分解積分法:原式

12xxx

dx12lnxxcx25C】利用湊微分法,原式f(arcsinx)darcsinxsin(arcsinxcx二、填11e2

利用湊微分法1e2x1d(2x1)1e2x1c 2F(exc;同上,原式f(ex)dexF(exc3、ex(x1C131x2 1x24

c:

(1x22

2d(1x2(1x22c5、cosx2sinxx

:xdf(x)xf(xf(x)dxcxsinx)sinxccosx2sinxc

n m6mnm

xmdxdx:

nm7lnxc5題,原式xdf(x)xf(xf(x)dxxlnx)lnxc1lnxc8sin

sin利用不定積分和導(dǎo)數(shù)或微分的關(guān)系,可 ;9

;同上,等于ex2c;

;先用湊微分法f(lnx)dlnxln3xc11、ex(11ex) 同上,原式(1ex)d(1ex)1(1ex)2c 12、1arctgx 利用不定積 ,原式1 dx1arctanxc。

41

(x)2 413F(arctanxC;利用湊微分法,原式f(arctanx)darctanxF(arctanxc14、

1815F(cotxC;利用湊微分法,原式f(cotx)dcotxF(cotxc16、yx21y

f(xf(x2x兩邊積分f(xx2cx

y1得c三、計算1x0

1dx

lnx

即斜率 的曲線族為:ylnx1x1

(C為任意常數(shù)x1y1代入上式,得C1ylnx12

3x2dx

2x2555(x

x22x

xx3xx

dx

dx(x22x2

2

x25

x22x2343x(ex

[(3e)x3x

(3e)

3xex1ln

Clnx 51x2dx11x2dxdx1x2dxx 3x2

6

1x

dx31x2dx3x5arctanx7

(2x

1(2x2

u2x

(2x3)10

1(2x3)10(2x

1u10du1u112u2x3

(2x3)10

1(2x8、 1 d(23x)1ln 2 2229、 dx1 d(222210、

xxt xx

t232tdt

2(t22t36tC3

2(x3)2x33x3 11x1t22(t2

t32t3

(x1)22(x1)2312、令t

x1(t33x33x

,dx

33x33x

t2dtt2tdt t51t2 3 521(3x1)31(3x1)352 13、

tx222

,dx

tdt dx

11

tln1t1

1t ln(1 2x)14

dx

dx

a

x

(a

x)(a

2aa

xa x1 d(a

x) d(ax)2a a

a 1(lnax

1 aa115a1

x

dx

a

21x2

dxa

21x2

dx1aa 16

a1xa dx d1xa1x1xa x17

(2

6(23x2

d(2

12(23x213

x32

x21)d(x21)

1x33

1(x21)233319

tan

sinxdx(cosx)dx1d(cosx)ln|cosx|cos

cos

cos20tan2xdx(sec2x1)dxtanxx21cos2xdx

=1sinx1x 22 dx

dx dxtanxcotxsin2xcos2

cos2 sin2223、sin2xdx1sin2xd(2x) 224sinxcos

cos2xdcosx12cos2xdcos

cosx2cos3x325sin3

sin2xsinxdxsin2xdcosx(cos2x1)dcos

1cos3xcosx326sin2x

xdx=sin2xcos2xcosxdx=sin=1sin3x1sin5x

xdsin 27

sinxcos

dx

cos sinxcos2

=

28sin3xcos3xdxsin3xcos2xdsinxsin3x(1sin2x)dsin

sin4=4

sin6xc6c29

ln

=1

=1(x2lnxx3dx)=1(x2lnx 1(x2lnx130

1dln

lnlnxxlnx31

lnxdxxlnxxdlnxxlnxx1dxxlnxdxxlnxx32

x2ln

lnxd1ln

lnx

lnx33

xlnxdx=3

=2(x2lnx33333

=x2lnx334

arctanx 1

arctanxdarctanxxsin

sin

35

xx1

xdx

x2x2

lnxsinxdd(1ex

lnx x36

x

1

xln(1ex)x37lnxdxsinx

=lnxdlnx

=1(ln2xcos2x)x2x38

ln(1x2)dx

xln(1x2)

1

39、 原式=lnxdxlnxdx=1(lnx)2xlnx1dx=1(lnx)2xlnxx 40xcosxdxxdsinxxsinxsinxdxxsinxcosxx2 x x41xarctan

arctan 2

arctanx

darctan2x

x x arctanx2

21x

dx

2arctanx2(11x2x2

arctanx

1x2

1arctanx242xexdx

exdx

xex 43x2exdx

x2exexd(x2

x2ex2

x2ex2x2ex2xexexdx

x2ex2xexex44、=1x2ex2 =1x2dex2=1x2ex21ex2dx2=1x2ex21ex2 x45、 ,則xx

t2,

2tdtexdx

2tet

2et(t

2ex

1)xex46 ,則xlnt22lnt,dx2dtxext 1t

1

t(1t)dt2t(1t

dt

1=

1ee1eex47

1dx

xxx xxxx48x

f(xcos2xdxx2c

f(x)

f(x)

xcos2x積分f(x)

cos2

dx

xdtan

2xtanx2tan

2xtanx2lncosxf

c

f(x)2x114x

1

dx=

)dx=

d(2x)

1(14x28

2d(14x214x14x114x14x12

1(14x2)214150、(x2lnx )dx=x2lnxdx =1lnxdx31dln ln=1(x3lnxx2dx)lnlnx=1x3(lnx1)lnlnxx x51、

arctanxdx

arctanxdx=xarctanx1

1

dx

arctan

f(x)sinxxcosxsin52

所 x3f

x3df(x)x3f(x)f(x)dx3x3f(x)3x2f(x)dxx3f(x)3xcosxsinxdxx3f(x)3xdsinx3cosxx3f(x)3xsinx3sinxdx3cosx2cosx53

f(x)2xex

f

xexexC54 單位成本函數(shù)C(x)

110)dx1x10k;由已知C(10025.1得k x 從 C(x)1x10;因 成本函數(shù)C(x)

1x2 利潤函數(shù) R(x)-C(x)

50x

1x4

;

502

0x

1

)

249055、1Cxx36dx

2平均成本AC

1x362ACx

x140ACx29800xx140

第五一、單項選1A2C3A4D】f(x)在ab上的平均值的定義,可知A正確5Df(x)3xD6D7D8C9D10C

”利 必達法則,可知C正確0AADDCf(x222x1x2f(241CCC】limf(x)1f(0

xet2

xet2dt limf(x)f(0)lim lim0 lime 10

f(xC

x

17C14C18C13C19Bf(x)2f(x

f(x)2lnf(x)flnf(x)2x

f(x)c

f(0lnf(x)ln

可知BCDCDC1】(x2 2k1025BB26C】(x2x30

0k0k27B25A128【B】A、不能 (因x

B、原式sinx00D、定積分的保序性,應(yīng)是1xdx10029【A】利用湊微分和,可知A正確CDCAD x2t1f(t)dt1(135【C】利用廣義積分收斂的判別,可知C正確36CC37A】原式

0 dx 1x 0138B】原式

exdx01e2x

x 39AS1(ex1)dxe2040AB41BB42B43【B】f(x) 原式31dxlnx 2 333 244【B 22

(x)dx

f2

45Bf(x)

1 46D】原式6

sinx)dx

2(sinx6

1247Cy1x0x1;又y10x1是極大y(1)0(x1)dx 二、填空1、cosx2、2f 3、

4、 、 、 、1

2。9、12x x10、(0, F(x)2100x1x 11、4

12、1/213、1/314215、 分段函數(shù)定積分,原式0(x1)dx1x2dx56 17

對稱區(qū)間上的定積分,原式

1xexdx

1 dx2

18、

;原式

d(1x2 1

e1x 1e219、24;原式12f(1x2d(1x212(1x222242 20、1f(2b) bf(2x)dx1f(2x)b1(f(2b)f(2a)) ;

225;原式1(1x)dx3(x1)dx5 23、10S2(x2x2dx10 241;原式=

eln21

1225、016026、1/2;令1f(x)dxaf(x)2xa再求0,10a1aa1227、 同26題為16 28 ;同26題4

429—322930、k131k132、a lnx33、1;原式 ln x

1dx1x x

134、3 0exdx2xdx3e1e; 35、0;160363ln2s2(x1)dx3ln237、1111。

11F(1x2、F(xx

F(x)(xtetdt)uu3u

,則F(x)G(u) 1

1 1t1 1F(x)G(u)u(x)

2x 4F(xt2lntdt xF(x)x2lnxxx05、易知這是一個“”型的未定式,利 法則來計0x

0ln(1xxx

x

ln(1x) x t 12t x2tx6、當(dāng)x1時,有t t t t

x2t 因 t

dt

”型的未定式,必塔法則,xt2et2

2

lim x 1xex22x2ex21

lim x1 27、因 是x3的一個原函數(shù),所以 ,有

x 24

8

xdx

cosx

所 0

0cosx0

292

x

x

x44

x

(22

x x2 x2x)e)e

2

e10e

1e1lnxdxee

1ln

=-(xlnx-1e1

+(xlnx-x)|1=2(1-11、2sin3xcos0

2sin3xdsin0

1sin4x2 12、t

x1t21dxtdt,且當(dāng)x0t1x4t3,于是2x2x4 4

3t2

tdt

13

311 11

3232x 2x

2 13xasint

dxacostdt

x0時,t0

xa時,tcost0 2 a所以 a2x2dx2acostacostdta2(1cos2t)dta(t1sin2t)a

1 2

14

2xcos0

2xdsin0

xsinx0

2sin0

cosx

2x15、 ,則dx2tdt,當(dāng)x0時,t0;當(dāng)x1時,t1,于x11e 1

2tet1 1

2e2et11121502

4x2

=2

24x2d(4x22

1= 12

1012e32 =2e33ln(1x) 17

=12

0(1x)(2 18、=1(12x2dx1

3 1 19x2

2

2(1sin2x)2dsinx

2cos4xdx 2021x2exdx2(121xdex

400212fxdx1e0

1000exdxxt12tetdt211000

2te121etdt20021dxlnx2ln00

原式2ln1 22、設(shè)x1 ,得dx

,而當(dāng)x 時,t1

,當(dāng)x2 2

時t1,1f(x1)dxf(t)dt(1x)dxcos

(x

2)1sinx

1 2 3sin 23

tx1 1f(x 2

f(t)dt 1

1

124、fx 1x2

fx 1x

ftt21 x

x x

x11x3cos2xfxdx2fxdx21x21dx1 25

f(x)dx f(x)dx

dx 11 11

01 1 Aarctanx1 14 AA 1

可得A 所 f(x) 1x 26

0

= 27

dx

= =arctg(x1)=

1(x 28、2(x3x3 029y

y

1xS1x

ex)dx

e

)1e

y20y30、拋物線與直線所圍成的圖形,由方程 0y解得兩線交點坐標(biāo)為(22及

。從圖形(略)y4 y2

A 42

dy31

ya

a2xaxxaab

ab2

b2

x3Vxaa2(ax

20a2(ax

axaabrr4r131 0

xx

)dx3

V

(x

x

)dx

2e33(1)Slnxdxxlnxee

e(e (2)所求體積Ve2 e21e2y

e21

334、兩條曲線的交點為(1,3)和(3,1),DS3(4x3)dx(4x13

3lnx)|=4

體積Vx

3[(4x)2(3)2]dx=π[1(x-4)3+9]|=83 3

d[R(x)35、先確定獲得最大利潤的產(chǎn)出水平xd[R(x)x24x

解得x 再

(2

20x0Lx0[R(x)0

111[(1052x)(x21

36 切點(e

y

S1(ey=0=

(ey

1 1

2 37

xdx

x2

x2

x2]002 238、s4(cosxsinx)dx 0 vx4cos2xdx4sin2xdx= [x sin2x]4 39s2x22x)dx3(x2

40、所圍平面圖形如圖交點坐標(biāo)為1,1,2,1,2,2 因 2

2 1

S1xxdx

lnx

2 41

tx10f(x1)dx1f01dt12

11 01

2ln21ln(142 設(shè)ux2,則42f(x42

0 2ueu2duu2 11cos u2

01

2tan11e412 tx112

12

11 11 43

1f(x2

1f(t)dt2xexdx

1(1)dt (1)dt xt3ln(t44、解:lim

xt3ln(tlim

x3ln(1 x2sin3

x21

45 設(shè)產(chǎn)品產(chǎn)量為Q(t),則Q(t)

5Q(5)

5f(t)dt (2t5)dt(t 5 t25Q(10Q(5f(t)dtt46、(1)L(QR(Q由 即R(Q)C(Q)0亦即72Q20,得Q=2.5(百臺),因為只有唯一駐點,R(QC(Q20Q=2.52C(2.5)C C(Q)dQ

252dQ2Q25

R(2.5

25R(Q)dQ25(72Q)dQ(7QQ2)25 L(2.5R(2.5C(2.511.2556.252.56.25(2)503L(3)

3[R(Q)23(52Q)dQ(5QQ2)

2500.25第六一、單項選25A51Axy0xy02C】同上ln(xy)0xy13D4A5B 6Dzx

1

yx

)x x2y

,z

1

yx

() x2ydz

x2y

(ydxx7Dzx

exy8A】

2xy1y2

2xx9Bzyxy1x10B】抽象的二元函數(shù)的偏導(dǎo)數(shù)ZxxZyy

zxuv,

uv,zyu

,z

u11C】

x2y

uy

x2y

vx

x2y

vy

x2y

C12Ax1z3f(1y,3

fy(1,2,3)3y 13Ay1z1f(x,1,1)x

1x1x

14Bf(xyxyxy)2xyf(xyy2fx(x,y)1,fy(x,y)2y15Cf(xyxyxy)(xyf(xydf(x,y)ydx16【D】抽象函數(shù)的偏導(dǎo)數(shù)zx3f zy5f,得DDD】zxy,zy (0,0)是駐點但不是CB21BD17(x0y0Dz(x,y)g(x)x2(2g(x2x8(1x0x5g(x)10

x4g4)24Cz

xyfy二、填空1edx

;z

z

zy

e(dxxy;y2、xy;y

z

zxyln

y3、y

;z2xyex2

zx2ex2

e(2dxx14、(dxx13

zx;

1x2y

zy

1x2y

1(dxdy);5、dz2xydx(x22 z;

zx22

dz2xydx(x22y6、0zy

z

所以原式y(tǒng)yxxy7

x ;z

(x1xy2yln xyln 8esinxycos

;zyesinxy

zxesinxyxydzesinxycos(xy)(ydxxy9、0zlnyln

z

z

原式10、1;x2xy3x2yx3ycosxx2y

x0y1y(0)11、0;F(xyz)x3y3z33xy

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論