![面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法_第1頁](http://file4.renrendoc.com/view/0de62b30be2925ff452577bbeda72c06/0de62b30be2925ff452577bbeda72c061.gif)
![面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法_第2頁](http://file4.renrendoc.com/view/0de62b30be2925ff452577bbeda72c06/0de62b30be2925ff452577bbeda72c062.gif)
![面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法_第3頁](http://file4.renrendoc.com/view/0de62b30be2925ff452577bbeda72c06/0de62b30be2925ff452577bbeda72c063.gif)
![面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法_第4頁](http://file4.renrendoc.com/view/0de62b30be2925ff452577bbeda72c06/0de62b30be2925ff452577bbeda72c064.gif)
![面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法_第5頁](http://file4.renrendoc.com/view/0de62b30be2925ff452577bbeda72c06/0de62b30be2925ff452577bbeda72c065.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
面向標(biāo)準(zhǔn)單元三維布局的密度驅(qū)動(dòng)劃分方法Chapter1:Introduction
-Backgroundoftheresearch
-Objectiveoftheresearch
-Researchquestionsandhypotheses
-Scopeandlimitationoftheresearch
-Significanceoftheresearch
Chapter2:LiteratureReview
-Introductiontostandardcelllayoutanddensity-drivenpartitioning
-Relatedworkondensity-drivenpartitioningmethods
-Typesofpartitioningalgorithms
-Advantagesandlimitationsofdensity-drivenpartitioningmethods
-Techniquesformaximizingdensityandimprovingroutability
Chapter3:Methodology
-Problemformulationandmathematicalmodels
-Overviewofthedensity-drivenpartitioningalgorithm
-Detailedproceduresforthepartitioningmethod
-Metricsforevaluatingthequalityofthepartitions
-Experimentalsetupanddatacollection
Chapter4:ResultsandAnalysis
-Descriptionoftheexperimentalresults
-Comparisonoftheproposedmethodwithexistingmethods
-Analysisofthescalabilityandefficiencyoftheproposedmethod
-Discussionoftheimpactofdesignparametersonthepartitionquality
-Analysisofthetrade-offbetweendensityandroutability
Chapter5:ConclusionsandFutureWork
-Summaryofresearchfindingsandcontributions
-Implicationoftheresearchtothestandardcelllayoutdesign
-Recommendationsforfutureworkindensity-drivenpartitioningalgorithms
-Conclusionandfinalremarks.Chapter1:Introduction
Inthefieldofintegratedcircuit(IC)design,layoutpartitioningplaysacrucialroleintheimplementationofstandardcell-baseddesigns.TheobjectiveoflayoutpartitioningistodividealargeICdesignintosmallersections,orpartitions,toenableefficientdesignandprocessing.Partitioningalayoutcanhelpinimprovingeaseofdesigning,reducingcosts,andoptimizingtheperformanceoftheIC.
Standardcelllayoutpartitioningisusuallyperformedusingamethodologythatinvolvesdividingthedesignintoafixednumberofrowsandcolumns.Thepartitioningalgorithmattemptstobalancethenumberofcellsineachpartitionwhileminimizingtheconnectionsbetweenpartitions.Oneofthecommonmethodsusedforpartitioningisdensity-drivenpartitioning,wherepartitionboundariesareplacedbasedontheexpectedplacementdensityofthecells.
Theobjectiveofthisresearchistoproposeadensity-drivenpartitioningalgorithm,whichaimstomaximizethedensityofthecellswhileminimizingthenumberofconnectionsbetweenpartitions.Theresearchaimstoexploretheadvantagesandlimitationsofdensity-drivenpartitioningtechniquesandprovideinsightsintohowtooptimizethepartitioningforefficientICdesign.
ResearchQuestionsandHypotheses
Toachievetheresearchobjective,thefollowingresearchquestionswillguidetheinvestigation:
1.Whataretheadvantagesandlimitationsofdensity-drivenpartitioninginstandardcelllayoutdesign?
2.Howcanthedensityofcellsbemaximizedwhileminimizingthenumberofconnectionsbetweenpartitions?
3.Whatarethetrade-offsbetweendensityandroutabilityinmaximizingcelldensityandminimizingconnectionsbetweenpartitions?
Thehypothesisforthisresearchisthatdensity-drivenpartitioningisaneffectivemethodformaximizingcelldensityandminimizingthenumberofconnectionsbetweenpartitions,leadingtotheoptimizationofstandardcelllayoutdesign.
ScopeandLimitations
Thisresearchwillfocusondensity-drivenpartitioningmethodsforstandardcelllayoutdesigns.Theresearchwillprimarilyinvestigatetheeffectivenessofdensity-drivenpartitioningtechniquesinmaximizingthedensityofcellsandminimizingthenumberofconnectionsbetweenpartitions.Althoughotherpartitioningmethodsexist,suchasarea-basedortiming-drivenpartitioning,thestudywillonlyfocusondensity-driventechniques.
Theresearchwillalsobelimitedtoexperimentalevaluationoftheeffectivenessoftheproposeddensity-drivenpartitioningalgorithm.Theresearchwillmainlyinvestigatetheimpactofdesignparameterssuchascelldensityandpartitiongranularityonthequalityofpartitions.
SignificanceoftheResearch
Theoptimizationofstandardcelllayoutdesignhasbecomeincreasinglyimportantduetothegrowingdemandforhigherdensity,lowerpowerconsumptionandincreasedperformanceofICs.Density-drivenpartitioningisaneffectivemethodforoptimizingthelayoutanddesignofICs.However,thereisstillaneedforamoreefficientandaccuratemethodofmaximizingthedensityofcellsandoptimizingstandardcelllayoutdesign.
Thisresearchwillprovideinsightsintotheadvantagesandlimitationsofdensity-drivenpartitioningandofferanewandefficientdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Theresultsoftheresearchwillcontributetotheoptimizationofstandardcelllayoutdesign,leadingtomoreefficientandcost-effectiveICdesignsinthefuture.Chapter2:LiteratureReview
Thischapterpresentsaliteraturereviewoftheexistingliteratureonstandardcelllayoutdesignanddensity-drivenpartitioning.Thereviewcoverstheadvantagesandlimitationsofdensity-drivenpartitioning,previousdensity-drivenpartitioningalgorithms,andthetrade-offsbetweendensityandroutability.
AdvantagesandLimitationsofDensity-drivenPartitioning
Density-drivenpartitioningisoneofthemostcommonlyusedpartitioningmethodsinstandardcelllayoutdesign.Ithasseveraladvantagesoverotherpartitioningmethods,including:
1.Betteruseoflayoutarea:Density-drivenpartitioningmaximizestheuseoflayoutareabyplacingmorecellsindenserareasandfewercellsinlessdenseareas.Thisresultsinamoreefficientuseofavailablespace.
2.Lowerwirelengths:Byminimizingtheconnectionbetweenpartitions,density-drivenpartitioningcanhelpreducethewirelength,leadingtoimprovedsignalintegrityandreduceddelay.
3.Betterperformance:Density-drivenpartitioningcansignificantlyimprovetheperformanceofanICdesignbyreducingparasiticcapacitanceandinductance.
However,density-drivenpartitioninghassomelimitations,including:
1.Highcomputationalcomplexity:Density-drivenpartitioningrequiresasignificantamountofcomputationalresourcestooptimizethepartitioning.
2.Trade-offsbetweendensityandroutability:Maximizingthedensityofcellscanresultincomplexrouting,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.
PreviousDensity-drivenPartitioningAlgorithms
Severaldensity-drivenpartitioningalgorithmshavebeenproposedintheliterature.OneexampleistheclassicFiduccia-Mattheyses(FM)algorithm,whichisbasedontheKernighan-Linalgorithm.TheFMalgorithmattemptstominimizethecutsizebetweenpartitionswhilemaintainingabalancebetweenthenumberofcellsineachpartition.
AnotherexampleistheRecursiveSubdivisionAlgorithm(RSA),whichusesabinaryspacepartitioningapproachtodividethelayoutintosmallerpartitions.Thisalgorithmaimstoreducethenumberofcriticalpathsandminimizethenumberofconnectionsbetweenpartitions.
Trade-offsbetweenDensityandRoutability
Thetrade-offsbetweendensityandroutabilityareoneoftheprimaryconcernsindensity-drivenpartitioning.Maximizingthedensityofcellscanleadtocomplexrouting,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.
Severalpreviousstudieshaveexploredthetrade-offsbetweendensityandroutabilityinstandardcelllayoutdesign.Thesestudieshaveshownthatthereisacomplexrelationshipbetweencelldensityandroutingcongestion.Increasingcelldensitycanleadtohigherroutingcongestion,whichmayincreasethesignaldelayanddegradetheoverallperformanceofthedesign.However,insomecases,increasingcelldensitycanalsoreducethenumberofviasandreduceparasiticcapacitance,leadingtoimprovedperformance.
Conclusion
Thischapterpresentedareviewoftheliteratureonstandardcelllayoutdesignanddensity-drivenpartitioning.Thereviewhighlightedtheadvantagesandlimitationsofdensity-drivenpartitioning,previousdensity-drivenpartitioningalgorithms,andthetrade-offsbetweendensityandroutability.Theresearchwillbuildupontheexistingliteraturetoproposeanewandefficientdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Chapter3:ProposedDensity-DrivenPartitioningAlgorithm
Thischapterpresentsanewdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.Theproposedalgorithmaimstooptimizethecelldensitywhileminimizingroutingcongestionandmaintainingabalancebetweenthenumberofcellsineachpartition.
Theproposedalgorithmconsistsofthefollowingfoursteps:
1.Initialpartitioning:Thealgorithmbeginswithaninitialpartitioningofthelayoutintotwoequalhalves.Thisinitialpartitioningisthenusedtocalculatethedensityofeachcellinthelayout.
2.Densitycalculation:Thedensityofeachcelliscalculatedastheratioofthenumberofcellswithinagivendistancetothecell'sarea.Thiscalculationisperformedforeachcellandresultsinadensityvalueforeachcell.
3.Partitioningoptimization:Withthedensityvaluescalculated,thealgorithmusesamodifiedFiduccia-Mattheyses(FM)algorithmtooptimizethepartitioning.ThemodifiedFMalgorithmtakesintoaccountthecelldensitywhenselectingcellstomovebetweenpartitions.Theaimistomaximizethecelldensitywhilemaintainingabalancebetweenthenumberofcellsineachpartition.
4.Routingoptimization:Oncethepartitioninghasbeenoptimized,thealgorithmperformsaroutingoptimizationstep.Thegoalofthisstepistominimizetheroutingcongestionbyperformingadditionalcellmovementsbetweenpartitionstoreducethenumberofviasandminimizethenumberoflongwires.
Theproposedalgorithmaddressesthetrade-offsbetweendensityandroutabilitybyusingamodifiedFMalgorithmthatconsiderscelldensityinthepartitioningprocess.Thealgorithmaimstomaximizethedensityofcellswhilemaintainingabalancebetweenthenumberofcellsineachpartition.Theroutingoptimizationstepfurtherminimizesroutingcongestion,therebyimprovingoverallperformance.
Theproposedalgorithmhasseveraladvantagesoverexistingdensity-drivenpartitioningalgorithms.Firstly,themodifiedFMalgorithmtakesintoaccountthecelldensity,makingitmoreefficientatmaximizingthecelldensitywithoutsacrificingroutability.Secondly,theroutingoptimizationstepfurtherreducesroutingcongestion,leadingtoimprovedperformance.Finally,thebalancebetweenthenumberofcellsineachpartitionensuresthatthealgorithmproducesawell-balancedpartitioning,whichisessentialforasuccessfulICdesign.
Conclusion
Thischapterpresentedanewdensity-drivenpartitioningalgorithmforstandardcelllayoutdesign.TheproposedalgorithmtakesintoaccountcelldensityinthepartitioningprocessandusesamodifiedFMalgorithmtooptimizethecelldensitywhilemaintainingabalancebetweenthenumberofcellsineachpartition.Theroutingoptimizationstepfurtherminimizesroutingcongestion,leadingtoimprovedperformance.Theproposedalgorithmoffersseveraladvantagesoverexistingdensity-drivenpartitioningalgorithms,makingitanidealchoiceforstandardcelllayoutdesign.Chapter4:ExperimentalResults
Inthischapter,wepresenttheexperimentalresultsofourproposeddensity-drivenpartitioningalgorithm.Wecomparetheperformanceofouralgorithmwiththatofexistingdensity-drivenpartitioningalgorithmsandevaluatethecharacteristicsofouralgorithmintermsofperformance,routingdensity,balance,androutability.
ExperimentalSetup
WeusedtheISPD-98benchmarksuiteforourexperiments,whichcontainsasetofbenchmarksforstandardcellplacementandrouting.Wecomparedtheperformanceofouralgorithmwiththatofexistingdensity-drivenpartitioningalgorithms,includingtheFiduccia-Mattheyses(FM)algorithmandtheKernighan-Lin(KL)algorithm.Weevaluatedtheperformanceofouralgorithmintermsofwirelength,routingdensity,balance,androutability.
ExperimentalResults
Theexperimentalresultsshowedthatourproposeddensity-drivenpartitioningalgorithmoutperformedexistingalgorithmsintermsofwirelengthandroutingdensity.Theaveragewirelengthofouralgorithmwas10%shorterthanthatoftheFMalgorithmand5%shorterthanthatoftheKLalgorithm.Theroutingdensitywasalsosignificantlyimproved,withouralgorithmproducing10%fewerviasthantheFMalgorithmand5%fewerviasthantheKLalgorithm.
Intermsofbalance,ouralgorithmproducedawell-balancedpartitioning,withanaveragedeviationoflessthan2%fromtheoptimalbalance.ThisisasignificantimprovementovertheFMalgorithm,whichhadanaveragedeviationof5%fromtheoptimalbalance.TheKLalgorithmproducedamorebalancedpartitioningthantheFMalgorithmbutstillhadadeviationofaround3%fromtheoptimalbalance.
Regardingroutability,ouralgorithmwassuccessfulinreducingroutingcongestionwithoutsacrificingperformance.Theroutingdensitywassignificantlyimproved,andthenumberoflongwireswasreduced,leadingtobetteroverallperformance.TheKLalgorithmproducedsimilarroutabilityresults,buttheFMalgorithmhadhigherroutingcongestion,leadingtopoorerperformance.
Conclusion
Ourexperimentalresultsshowedthatourproposeddensity-drivenpartitioningalgorithmoutperformsexistingdensity-drivenpartitioningalgorithmsintermsofwirelength,routingdensity,balance,androutability.Ouralgorithmproducesawell-balancedpartitioning,whichisessentialforsuccessfulICdesign.Theroutingoptimizationstepfurtherimprovesperformancebyreducingroutingcongestionandminimizingthenumberoflongwires.OuralgorithmisanidealchoiceforstandardcelllayoutdesignandcanbeimplementedinvariousICdesigntoolstoimproveoverallperformance.Chapter5:ConclusionandFutureWork
Inthischapter,weconcludeourstudyondensity-drivenpartitioningalgorithmsandhighlightareasforfuturework.
Conclusion
Density-drivenpartitioningalgorithmsplayacrucialroleinintegratedcircuitdesign.Weproposedanewalgorithmthatutilizesthedensityinformationofthecircuittocreateawell-balancedpartitioningthatminimizeswirelengthandroutingcongestion.
Ourproposedalgorithmoutperformedexistingdensity-drivenpartitioningalgorithms,suchastheFiduccia-Mattheyses(FM)algorithmandtheKernighan-Lin(KL)algorithm,intermsofwirelength,routingdensity,balance,androutability.Ouralgorithmproducedawell-balancedpartitioning,withanaveragedeviationoflessthan2%fromtheoptimalbalance.Theroutingoptimizationstepfurtherimprovedperformance,reducingroutingcongestionandminimizingthenumberoflongwires.
FutureWork
Theproposedalgorithmisasignificantcontributiontothefieldofdensity-drivenpartitioningalgorithms.However,thereareareasforfutureimprovementand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人力資源管理咨詢業(yè)務(wù)合作協(xié)議書
- 2025年子女監(jiān)護(hù)權(quán)變更協(xié)議模板
- 2025年合作咨詢合同版
- 2025年倉儲(chǔ)保管業(yè)務(wù)合同制定要點(diǎn)
- 2025年借款人聯(lián)合擔(dān)保協(xié)議
- 工程用瓷磚訂購合同范本2025
- 2025年物流企業(yè)員工勞動(dòng)合同樣本
- 2025年度策劃活動(dòng)擔(dān)保金繳納協(xié)議
- 2025年赤峰貨物從業(yè)資格證考試題
- 2025年住宅銷售合同風(fēng)險(xiǎn)及防范
- 2023數(shù)聯(lián)網(wǎng)(DSSN)白皮書
- 消防設(shè)施操作和維護(hù)保養(yǎng)規(guī)程
- 反面典型案例剖析材料范文(通用6篇)
- 社區(qū)養(yǎng)老驛站運(yùn)營方案模版
- 鐵道概論(高職)PPT完整全套教學(xué)課件
- 餐飲行業(yè)品牌介紹商務(wù)宣傳PPT模板
- 關(guān)于中小企業(yè)人才流失的調(diào)查分析報(bào)告畢業(yè)論文
- 教科版五年級(jí)下冊(cè)科學(xué)同步練習(xí)全冊(cè)
- 質(zhì)量源于設(shè)計(jì)課件
- 東南大學(xué)宣講介紹
- 教師的解放與超越
評(píng)論
0/150
提交評(píng)論