![2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)](http://file4.renrendoc.com/view/36006772f7cc4ff24192a646d25beb3e/36006772f7cc4ff24192a646d25beb3e1.gif)
![2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)](http://file4.renrendoc.com/view/36006772f7cc4ff24192a646d25beb3e/36006772f7cc4ff24192a646d25beb3e2.gif)
![2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)](http://file4.renrendoc.com/view/36006772f7cc4ff24192a646d25beb3e/36006772f7cc4ff24192a646d25beb3e3.gif)
![2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)](http://file4.renrendoc.com/view/36006772f7cc4ff24192a646d25beb3e/36006772f7cc4ff24192a646d25beb3e4.gif)
![2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)](http://file4.renrendoc.com/view/36006772f7cc4ff24192a646d25beb3e/36006772f7cc4ff24192a646d25beb3e5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖南省永州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
4.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面
5.下列命題正確的是()A.A.
B.
C.
D.
6.()A.A.1/2B.1C.2D.e
7.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
8.
9.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
10.
11.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
12.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
13.
14.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
15.()。A.2πB.πC.π/2D.π/4
16.A.A.
B.
C.
D.
17.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
18.
19.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
20.
二、填空題(20題)21.
22.
23.二階常系數(shù)線性微分方程y-4y+4y=0的通解為_(kāi)_________.
24.
25.26.
27.設(shè)f(x+1)=4x2+3x+1,g(x)=f(e-x),則g(x)=__________.
28.
29.
30.設(shè)f(x,y,z)=xyyz,則
=_________.31.
32.
33.34.35.
36.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
37.
38.
39.
40.微分方程y"+y=0的通解為_(kāi)_____.三、計(jì)算題(20題)41.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
43.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.47.證明:48.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.49.
50.
51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.求微分方程的通解.
55.
56.求曲線在點(diǎn)(1,3)處的切線方程.57.
58.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.四、解答題(10題)61.
62.63.64.
65.
66.
67.
68.
69.
70.五、高等數(shù)學(xué)(0題)71.
有()個(gè)間斷點(diǎn)。
A.1B.2C.3D.4六、解答題(0題)72.
參考答案
1.C
2.C
3.A
4.A
5.D
6.C
7.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
8.D
9.C
10.C
11.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
12.A
13.D解析:
14.D
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
15.B
16.D
17.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。
18.A解析:
19.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
20.C
21.
22.
23.
24.
25.tanθ-cotθ+C
26.
本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程的求解.
27.
28.本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知
29.
30.=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。
31.
32.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.33.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知34.(2x+cosx)dx.
本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
35.1.
本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
36.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
37.
解析:
38.
39.40.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
41.
42.函數(shù)的定義域?yàn)?/p>
注意
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
44.
列表:
說(shuō)明
45.46.由二重積分物理意義知
47.
48.
49.由一階線性微分方程通解公式有
50.
51.由等價(jià)無(wú)窮小量的定義可知
52.
53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.56.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)尚產(chǎn)業(yè)辦公空間裝修協(xié)議
- 游泳池裝修終止合同
- 化妝品店內(nèi)部裝修合同細(xì)則
- 海上夜游航線乘客協(xié)議
- 智能園區(qū)砂石運(yùn)輸服務(wù)合同
- 潤(rùn)滑油國(guó)內(nèi)運(yùn)輸協(xié)議
- 2025年度安防設(shè)備展覽會(huì)專業(yè)展臺(tái)搭建合同
- 醫(yī)療器械配送服務(wù)合同
- 物業(yè)小區(qū)翻新服務(wù)方案
- 外架工勞務(wù)合同范例
- (康德一診)重慶市2025屆高三高三第一次聯(lián)合診斷檢測(cè) 英語(yǔ)試卷(含答案詳解)
- 2025年福建泉州文旅集團(tuán)招聘24人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑行業(yè)砂石物資運(yùn)輸方案
- 腫瘤全程管理
- 融資報(bào)告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024風(fēng)能發(fā)電系統(tǒng)風(fēng)力發(fā)電場(chǎng)監(jiān)控系統(tǒng)通信第71部分:配置描述語(yǔ)言
- 污泥處置合作合同模板
- 腦梗死的護(hù)理查房
- 2025高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):概率與統(tǒng)計(jì)的綜合應(yīng)用(十八大題型)含答案
- 2024-2030年中國(guó)紫蘇市場(chǎng)深度局勢(shì)分析及未來(lái)5發(fā)展趨勢(shì)報(bào)告
評(píng)論
0/150
提交評(píng)論