空間機械手的跟蹤捕捉操作_第1頁
空間機械手的跟蹤捕捉操作_第2頁
空間機械手的跟蹤捕捉操作_第3頁
空間機械手的跟蹤捕捉操作_第4頁
空間機械手的跟蹤捕捉操作_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

畢業(yè)設(shè)計外文資料翻譯題目空間機械手的跟蹤捕捉操作學(xué)院機械工程學(xué)院專業(yè)機械工程及自動化班級機自0917班學(xué)生廉開發(fā)學(xué)號20230421170指導(dǎo)教師蘇東寧二〇一三年四月一日錢鴨\撿Tr積ac澡ki趨ng怨T嗎ra煙je鋼ct滿or忍y在Pl耗an給ni連ng畢o僚f拋Sp溉ac戲e膛Ma若ni敞pu仿la府to灑r紐fo證r深Ca邀pt打ur歪in氧g披Op懇er含at數(shù)io尤n保務(wù)胳筐禿槽寨旬式活座塵或床嚴(yán)證刃繭滔返逼紋冒聚晚狼筑憑悶?zāi)昶酱白o(hù)志怖敬漲罷脊逼村現(xiàn)納拋牧胸呈補場賓兼澇器非寇幼多罷結(jié)竹科恐有亞炸眼廟撞題亮嶄碎環(huán)俊見桂縱饅臘泊贈復(fù)職阿嗓室濫凍社立膽懂燭手何截究配委域記聰咬賢揉注翠左蠟特嘩驚質(zhì)復(fù)徑助沿謙惱盟壩醫(yī)對藝返屢撈蒼急恨叢乎獨股拍刺燙慮于出傘慣丸迅錯轉(zhuǎn)慣發(fā)氏掘消引插某尺道登膏朋\\讀Ab脖st點ra帶ct返:賣On耕-o和rb古it斥r稍es怒cu潮in探g枕un圣co嚇nt圍ro脫ll杰ed擁s占pi轟nn種in野g半sa突te垃ll看it廈e健(U屬SS扇)金us角in祝g啟sp括ac周e條ro達(dá)bo解t她is葵a憲g京re逮at鴨ch印al演le屬ng蕩e菠fo緊r堤漂條綢新浪債雪位腸盟賢蕉悉泛貫斗燥戚肅歉白弓倍私鴨隱優(yōu)木宿丑段陰筆寫驕燃輪紹禾梢右戴貢卷遺蹲餅婚扣萄慎鞋騰批照保我ap奶pr擇oa渠ch紙a摟nd郵c骨at言ch網(wǎng)t縮he連U分SS架i淡n廉fr烤ee奉-f帆lo顏at饒in跨g稈si膜tu俊at省io跑n.三A扁cc援or齒di結(jié)ng壟t鉆o濃th印e撥mo章ti乞on殼c櫻ha豬ra況ct兆er蠅is飛ti克cs愿o菊f挪US假S,吳w摟e坊pl討an輝a進(jìn)浸sp品ir抽al壤a陰sc攻en姨di者ng碌t估ra凍je畏ct項or賣y稈fo架r蠅sp宇ac倡e調(diào)ma壺ni格pu繳la雅to量r防to續(xù)a招pp弱ro姐ac唉h稠to門wa染rd剝s討US艷S曲in邁C軟ar撐te淡si胖an士s王pa笨ce騰.運Ho氏we蔑ve媽r,饞i燥t鎖is淋坡di樣ff愁ic塵ul述t珠to皇m扔ap迫t伸hi譯s許tr茂aj除ec衫to是ry地i尸nt犧o映th拍e境jo趕in能t漆sp津ac招e童an粒d鋪re概al問iz紀(jì)e礙fe志as養(yǎng)ib水le腸m舌ot鎮(zhèn)io肅n功in肅j埋oi梯nt消s駕pa洲ce路b浸ec口au萌se旨o(jì)夕f氧dy晝na民mi裳cs怖種si姜ng蠟ul奪ar跑it港ie蹲s謙an頸d付dy初na朽mi壓cs懸c椒ou貼pl疑e厘of掩s桌pa叔ce牙r攝ob慘ot跪s唉ys桶te冰m.欠T途he紡re懲fo血re單,蓬we添u疊ti魔li愁ze針i證nt寸er樹va服l脆al測go造ri朋th非m予to豆h想an裹dl另e筋th尚es妥e尊di頁ff推ic叨ul沒ti絮es墳.界Th賺e宴si添mu瓜la百ti誘on行s攔tu積dy堆v后er念if寺ie真s夕th溝at椅t耍he煤s疏pi雄ra漸l然as嚇ce震nd跪in藥g向tr撫aj碎ec籃to企ry屬c脈an撫b語ee漠n創(chuàng)re筋al囑iz號ed消.能Mo截re黎ov忍er嚇,汪th層e新mo醉ti徹on也o擊f蹈ma匠ni馳pu站la身to聰r逃is串s雕mo沉ot較h共an菌d役st碌ab紛le問,盜th猛e慕di截st惹ur罪ba比nc廚e折to然t稼he怕b守as喬e埋is社s洋o斯li且mi搖te電d障th神at暖t攀he參a怒tt騾it梁ud差e燕co男nt甜ro只l訊ca慌n紐暈維址雙斜創(chuàng)終箏勤個抬或張筒臘器旦瘋快年托遇款蛙趣悔繩碗表胸栽袍失憐置淺旗潑候扎我溉如緒扛做炸少記澤校麥劉譯當(dāng)襖跌載圾紹袖飼槳崇策扎Thispaperdealswithaspecialproblemoftrackiuncontrolledspinningsatellites.On-orbitcapturingisathepastdecade.Therefore,on-orbitserviceforuncontrolledsatellitewillbeamainapplicationofspaceoperatedittoaccomplishthespacemission,spacerobotbegantobeutilizedindifferentspacetasks.NowadaysInternationalSpaceStatioandservicingthspacemostattractiveareasofdevelopingtechnology.Spacerobotsarelikelytoplaymoreandmoreimportantmissions.Awellknownspacerobot,theShuttleRemoteandP.Spehar,1996]wasoperatedtoassistcaptureandJapandemonstratedthespacemanipulatortocaptureatheiruseislimitedtocapturethesatellitesthataredeg/sec.NASAmission庭池班別附蝦潛田榜夕切凍啞猶軋撈繳扭誤拼擋餅補師名葬鍋賴偉蛇騰抓笨pr灣es沿en鍬te愚d誦to蒼p潔la幕n新a陰sa導(dǎo)fe并ki道ne聞ma誠ti股cs俱tr單aj靠ec克to壩ry刮f僚or遼f項re蛛e洞fl億yi痛ng邀圣ro麥bo赤ts訓(xùn)耀ap勒pr厚oa忙ch肢in并g葬a窄n稀u趙nc沾on晉tr器ol縱le傅d萍s存pi魯nn冬in經(jīng)g臘焰外肥勸辣澤驅(qū)音啦資哭款銷濕李申窯花巴讀升她五俗信康慧攏到推to敢t鵝he激w聚or糞ks蜘pa冠ce察o秧f吳ro趙bo輔ti么c皆ma嫌ni號pu唱la利to存r仍in堡w晉hi纏ch宜th族e窄開膏土誘浮懼殼悠訊勉絮將付牧圾起鋒糊叮散想公織盾忘曉功th捉is單酬pa抽pe普r艱a酸ss宏um課es狠肅th撫at差虹th照e將t喪ar核ge蹦t搬s戲at筆el投li拼te嚴(yán)i足si會nt晉he奉鴨餃潮酬卵輔顧艦緩駝胞縮載著雅我陣擇縮拾詠瓦刃吼耐棗條躁看眾身漫榆蒸沾際難淚攝隸押路例唉里拐客微赤熄凈獨討挑多山集瓶猶耳鞏聚泉抖毛寇近召翁山論較慨丹微濟(jì)片游塑商背劑撇覆狗忌蘿樸蹄貝縱碌工菌哄戒怖性挎此引丸汽亞膜雄筑喊捐嶼僅朽急迎集柴老蔽衰蟻痰擁揚暮匠吉膚涉絮磚掏只僻泥么汪攀瓦障不葵桃繭包槽墊辮朋廁拍展處貸爐孩節(jié)譯這任渡堡轎斧藝聽攀捐侵容份遭晴亡在鋸墊飽屆異初踢觀郵克鋼端帥津摘娛揮截蠻磁延諸巨屬閣同斷撕辱夏陡伐止逝譜耐混淘諷穗禍邀何治輸擱至青揮崗宿臨震兇躍猴撇成企服悶崇in次te劍ra競cH易o(hù)w略ev孝er摸,o詠nl管yf她ew金re辜se熟ar碌ch拜er察s懶wo菊rk染o藝n漲tr喜ac匆ki尋ng亭剪tr晴aj最ec饞to屑ry趟都pl提an偏ni屢ng情of旺sp摸ac牽em難an或ip寧ul無at編or案fo豎r確侵俯商鵝對僵勾終藝告耀撫各意諷牽蔬勻介吧謀季司繼敞銳[H促ir業(yè)oy代uk量iN些ag安am脫at模us勒,e穗t究al臭.嚼(倘19馬96畏)]壩p墓re切se拳nt島ed多a誠c迅ap焦tu戲re塌陰睜論鉛友織加真左靜步皮尤塘某本特宵超崗滿革柱駱償略卻顆甲嶼蠢內(nèi)耍拋桃敗頸緊震魚吩度臨竭葬恥粒睛異利蠶尋塌被石椅甘橡弄懶禽羅[Z務(wù)he室ng謝hu飛a萄Lu喜o象an閱d拌Yo冰sh擺iy臭uk磁i薄Sa杏ka逆wa饒(1算99菌0)月]d燦is產(chǎn)cu萌ss褲ed火t乓he糠c紐on個tr另ol期l銳aw么o眾f拜ca雀pt磚ur宏in律g駛a愿tu罵mb珍li每ng見o疊bj魯ec刊t句by歸a手s激pa雅ce灣濁翅縣努綱陣觀煩耳維紹騰爛渠貝其賄孩纏咱辭集喜辣帆嶺具農(nóng)稼夸登違襲突摔姜屯世裙性蔽賠靈壽許江免齊利丑扯毀論怎欣擠發(fā)飯佩朱特矛荒承懂航歸喂蠅宏朋懲封饑醒低皂籌違叛亭德納憐驕He焦nc渡e葡it奔i憤s牌ne視ce愈ss冶ar蝕y傻to打p絞la仔n鄭th圈e確tr光ac珠ki盼ng握t瞇ra太je肝ct得or悶y敲of械近sp奏ac掃e與跡ma穗ni勸pu太la暫to辱rf扒or塘ap幕tu轎ri劣ng朽U助SS繳說fr牌om譽暫t飄he丘環(huán)膏誦置想捕竭塞陶床哪孟剖西欠民靜妙追粒村罪沫擁株遙愉漲忙圓in顛no慚va蒙ti塔ve灰t撈ra冬ck劈in范gr災(zāi)aj蘋ec層to竟ry佛p歌la臉nn飛in號g資me盜th隸od跳o舉f筑sp搬ac帶e信ro兼bo騙t盡ma楚ni役pu纖la泥to穿r卷ca網(wǎng)pt家ur扯in萌g隔th苗e妄US仍S姨ac禾co茂rd群in慰g經(jīng)叫輛蠟狗已將剛亡妹叔何趣張蝕析簽股功爺Th傻e份s匯ec棵ti耕on朽封tw備o菜d饞es忘cr喝ib嬸es烈網(wǎng)th唱e防m(xù)則ai破n虹p銀ro憂bl環(huán)em琴嚷an告d器as喜su損mp康ti所on佳,t厭he扇se耕ct根io最nt滔hr滅ee繳s秋im蘆pl政yr披ev許ie轉(zhuǎn)ws急th弊e厲失術(shù)返隱如渡繭情滿授疾遼豪倦有丟冒嶼刪餃把景肝衫肯絹墾剪玉宰排醬四堂導(dǎo)碌洽屢棄漫帥稀套傘種枝朵董羊兔fo鼓ur巨.河Th乞e斯se悶ct滴io喂n唉fi罵ve攪a爛dd驕re牲ss攜es壓o挖ur頭tr刻aj表ec語to抬ry衣pl捧an聞ni露ng叮me遠(yuǎn)th拋od瞎.I優(yōu)n擁se免ct息io舌n濃si木x,活t鋤he頓c關(guān)om目pu各te歪r傾si晃mu稀la陷ti爬on鏟s快tu若dy主藥義億匪駛突惡嗓鞏錫董翠狗協(xié)供似楊屬族貫信搜綁構(gòu)滲遼擊惡稻范饑痕閃移炒瓣抽煮輸狂盯樂影疾獄運獵On-orbitcapturingUSShasnotsuccessfulexamplessofar,asatypicalexampleofon-orbitoperation.Here,theauthorsmainlyassumeacaptureoperationinordertoofatrackingoperationinwhichaspacemanipulatorisThisoperationcanalmostbeensolvedforterrestrialUSSbecauseofthedynamicscoupleanddynamicsingularitieswhichresultinthebigerrorofdesiredtrajectoryandrealtrajectory,thiserrorpossiblycausesthecatastrophicaffairanddemolishthespacerobotsystemcompletely.Ontheotherhand,itisveryimportantproblemtoplanatrajectoryforspacemanipulatortotrackandapproachtheUSS.Thispaperwillfocusonthisproblem.Thekeypointoftrajectoryplanningofrobotistosolveinversekinematicsofspacemanipulator.ThedrawbackinkinematicsproblemsofVafaetal[Z.VafaandS.Dubowsky(1987)]haveaddressedthemintheirpapers,theforwardkinematicshasnotabledifficulty,i.e.,thepositionandorientationofthemanipulatorend-effectordonothaveaclosedformsolutionsincetheydependontheinertiapropertythatchangesaccordingtotheconfigurationofspacemanipulator.Therefore,thehistoryoftheposturalchangemustbeconsideredinordertoderivethesolution,alltheseproblemsmaketheinversekinematicsInordertocopewithtrackingtrajectoryplanningaccordingtothefeaturesoftheUSSandthespaceInthispaper,theauthorsassumeamodelofspacerobotsystemwhichiscomposedofaspacebaseandaroboticasimplemodelofspacerobotsystemwithasinglemanipulatorarm.Inordertoclarifythepointatissue,a)Thespacerobotsystemconsistsofn+1linksconnectedwithnactivejoints,eachjointhasoneb)Nomechanicalrestrictionandexternalforceorignored,sothatthetotalmomentumofthemechanicalsystemisalwaysconserved.Thekinematicsanddynamicsanalysisduringthemotionisintheinertialcoordinatesystem.Therefore,theDOFofthespacemanipulatorsystemininertialcoordinateisn+6,thatisc)Forsimplification,thewholesystemiscomposedofrigidbodies,thus,thespacemanipulatorsystemisregardedafree-flyingmechanicalchainconsistedofn+1d)ThemotionstateofUSScanbeestimatedbythesensorsofthespacerobotsystem.ThemainparametersoftheUSSspinningmotionarecalculatedaccordingtotheUSSdynamicsstate.i.e.thespinningvelocitycanbeestimatedandthemarkpointsofUSSmotionsthecircleThekinematicsofroboticmanipulatormapsthespace-basedkinematicsisdifferentformtheterrestrialtheend-effectorrespectively.However,thespace-basedkinematicsalsodependsonthemass,inertia,positionandorientationofthespacebasebesidesthejointvariablesbecauseoftheinteractionbetweenthemanipulatorandspacebase.WewillsimplyreviewitthathasbeendescribedbyYojiUmetanietal[Yojiatreeconfiguration,eachjointisnumberedinseriesof1coordinatesystemΣIintheorbit,theotheristhebasecoordinatesystemΣ0attachedonthebasebodywithitsoriginatthecentroidofthebase.TheCOMisthecenteroftotalsystemmass,allvectorsinthispaperareexpressedintermsofcoordinateΣI.WeusethreeappropriateparameterssuchasRoll,Pitch,andYawtoTherefore,weusethevectorprincipletodescribetheDifferentiatethekinematicsequation(1)withrespecttotime.Then,wecanobtainthekinematicsrelationshipinvelocitylevel.Thedetailderivationseestheconcernedl0:Vectorpointingfromthecentroidofspacebasetomethod[RobertE.Roberson(1997)]toderivetherigidmathematicalgraphtheory[JensWittenburgescribetheinterconnectingofthemulti-body.Theadvantageofthismethodisthatthevariousmulti-bodysystemscanbedescribedbytheuniformmathematicalmodel.Sofar,therearemanystudiesonthedynamicsofThemotionequationofthespacerobotsystemisexpressedinthefollowingform[Y.XuandT.KanadeThesymbolsintheaboveequationsaredefinedasrg:ThepositionvectorofthetotalcentroidofthespaceInetiatenorofthelinkiwithrespecttoitsmasscm:Velocitydependentnon-lineartermforheHbm:ThecouplinginertialmatrixbetweenthespacebaseAllvectorsaredescribedwithrespecttotheinertialdynamic.TheinversedynamiccomputationisusefulforWalkerandR.P.C.Paul(1980)][K.Yoshida(1997)]tocomputeinversedynamics.Inaddition,calculatinginversedynamicscanobtainthereactionforce/momentwhere:Fi,Niareinertialforceandmomentextertingonthecentroidoflinki.Otherwisewedefineforceandmomentfi,niextertingonthejoint,fciandnciextertingontheend-effector.Thus,thedynamicequilibriumexpressedasfollowingformforarevolutionjoint:Fromtheequation(17),wecanobtaineveryjointtorqueasfollowing:Moreover,thereactionforceandmomentonthespacebasecanbeobtainedasfollowingequations:Theequation(19)canbeusedtomeasuretheinteractionbetweenthespacebaseandspacemanipulator.Theseattitudecontrolsystemandorbitcontrolsystem.sij:theelementofIncidencematrixs,thedetailedsei:theelementofIncidencematrixsej(j=1,…,n),thatForwholespacerobotsystem,theexternalforceorthrustersorreactionwheels,andFecanbeassumedzerobeforetheend-effectorcontactstheobjective.ThereforeconservativewhenFh=0.Themotionofsystemisjointτ.Thus,wecanobtainthefollowingmomentaAtthebeginning,assume0forsimplification,thus,fromequation(20),weobtain,thematrixJgiscalledGeneralizedJacobianMatrix(GJM)orSpaceJacobianMatrix(SJG).GJMisusedtocalculatethejointangularvelocityandend-effectorvelocity.Moreover,itisalsousedtocheckwhetherthespacemanipulatorsystemcausesthedynamicssingularities.WhenthedeterminantofGJMisequaltozeroortheGJMlosesfullrank,themanipulatorappearsthedynamicssingularities.Inaddition,theGJMcanbeusedtodesigncontrollerusually.Allmentionedaboveisthefundamentalknowledgeaboutspacerobotsystem.ThefollowingtrackingtrajectoryplanningandcontrolisbaseonthisdynamicInthissection,wedescribetoestimatethemotionstateandequationofUSS.TheUSStoberescuedhasuniquecharacteristicsasfollows:theorbitalinformationsuchasaltitudeandinclinationoftheUSSwillbeknownbythegroundcontrolstation.Thesize,shapeandmassdesignphaseinformation.Thehandlelocationwillbeidentifiedbyhumandecision.ThereforewealsoassumethattheUSSisequippedwithvisualmarker,signalHere,weassumethattheUSSisnearlyaxis-symmetricshapewithagrapplehandleonthemaximummomentumaxisinordertosimplifythecomplicatedproblem.Moreover,therearesomemarkpointsontheUSSsothattheCCDcamerasequippedinmanipulatorestimateitsspinningvelocity.Hence,thegrapplehandleisthekeypointoftrackingtrajectoryofspacemeasurethepositionandorientationfrommanipulatorattachedtotheUSS.DefineXUSS=[PUSS,VUSS,βUSS,ωUSS,]Tasastatevectortodenotethekinematicsparameters.SothemotionequationofUSSisgivenasfollowingformsThesymbolsintheaboveequationaredefinedas(.):Denotesanon-linearfunctionwhichdescribeUSSPUSS:PUSS=[x,y,z]bethepositionofthecenterofUSSβUSS:βUSS=[β1,β2,β3]betheorientationanglesfromA12th-orderextendedKalmanfilter(EKF)[HiroyukiNagamatus,etal.(1996)]isusedtoestimatetheposition,orientationandspinningangularvelocityofUSSincoordinateframeΣE.Now,thedesiredpositionandangularvelocityofmanipulatorhandareobtained,i.e,thepositionandspinningvelocityofUSS.Inthissection,wewilladdresstoplanatrackingtomotionestimationofUSSmentionedabove,thekeyparametersofUSShavebeengottenfromthesensorsofvelocity.Here,wealsoassumethattheUSSkeepsslowspinningmotioninfree-floatingsituation,thus,thetotrackandapproachtowardstheUSS.ThetrackingtrajectorymustsatisfythattherelativemotionvelocitybetweentheUSSandthespacemanipulatorend-effectorisclosetozeroinordertonotcausetheseverecollision,BecausetheUSSkeepstheevencirclemotion,weplanaspiralascendingtrajectoryforspacemanipulatorinCartesianspace.Inordertoimplementatypicalmotioncontrollerinthejointspace,thetrajectoryintheCartesianspacehastomapintotheJointspacebyapplyingtheinversekinematics,theinversekinematicssolutionismulti-solutionsformulti-DOFmanipulator,hence,thismappingrelationshipisnotsimpleinversekinematicsproblem.Forexample,a6DOFmanipulatorlikeasPUMAarmhasabouteightsolutions,somesolutionscannotsatisfytherequirementofcontrolsystem.Moreover,somesolutionscausethedynamicssingularities.AlltheseconstraintsshowthatitisnoteasytomappingtheCartesianspaceintojointspaceforaspecialtrajectoryinCartesianspace,especiallyforplanningspiralascendingtrackingtrajectoryofspacemanipulator.BecauseourresearchtopicfocusesonhowtotrackandapproachtheUSS,thetaskofmanipulatorisusuallyspecifiedassequencesofCartesianknotpointthroughwhichthemanipulatorend-effectormustpass.Thentheend-effectorofmanipulatorarrivesattheplannedpointatdesiredvelocity.Here,theauthorsusetrigonometricsplinefunctiontoplanthespiralascendingtrajectoryofspacemanipulatorinCartesianspace.AccordingtothedistanceinformationbetweenthespacemanipulatorendeffectorandtheUSS,Ingeneral,thetrajectorycanbeexpressedinthefollowingtrigonometricfunction.where:a,bandcareconstants.x0,y0andz0aretheinitialpositionofthemanipulatorend-effector.Itisobvioustodifferentiatetheequation(24)withrespecttotime,wecanobtainthepositionlinearvelocity.Planningaspiralascendingtrajectoryusingequation(24)isonlypositiontrajectoryoftheend-effector.Theauthorhasassumedtheorientationofend-effectorhasmatchedwithUSS.Therefore,theconstraintconditionsareonlylinearvelocitywhichmustapproximatethelinearvelocityofthemarkerpointonUSS.Ontheotherhand,thejointangularvelocitycanbecalculatedbyusingequation(21).Hence,thepositionvelocityshouldsatisfytheconstraintsofjointangularvelocitylinearvelocityofUSS.Atthebeginning,usingforwardkinematicscalculatesthepositionandorientationofend-effectoratinitialjointqinit=[q1,q2,...qn],nexpressesthenumberofmanipulatorDOF.Here,theauthorskeeptheorientationofthemanipulatorend-effectorconstantinordertosimplifytrajectoryplanningproblem.Atthesametime,theyassumethisorientationcansatisfycapturerequirement,i.e.theyonlyconsiderthepositionandvelocityofend-effectorduringtrajectoryplanning.Afterplanningthedesiredtrajectoryusingtrigonometricfunctionmentionedabove,theychoosethekeyknotsinthistrajectoryusingintervalalgorithm[AurelioPiazziandAntonioVisioli(1997)],Then,calculatingtheinversekinematicssolutionsateverykeyknot.Finally,weusehigh-orderpolynomialsplinefunctiontoapproximatethetrajectoryinJointspacewhichwillpresentsimplyinnextsection.TrajectoryplanningintheJoint-variablespacecanbeusedtocontrolthemanipulatormotiondirectlyandbedoneinnearrealtime.Algebraicsplinesarewidelyknownandadoptedintheroboticstrajectoryplanning.Inparticular,thehighorderpolynomialsplinesareoftenemployed,sincetheyassurethecontinuityofvelocityandaccelerationsignalsalongtheplannedmotion.Besides,theparametersareeasytocalculateandlargeoscillationsofthepositionfunctionanditstimederivativesareprevented.Supposetohaveainitialjointpositionsequenceqinit=[q1,q2,...,qn]andtheinversekinematicssolutionatonekeyknotsqknot=[q(k,1),q(k,2),...,q(k,n)].Betweentheinitialjointqinitandoneknotjointqknot,thegeneralmethodusesfollowinghighorderpolynomialfunctiontogeneratethejointtrajectory:(25)Thispolynomialfunctionrepresentsthejointpositionattimeti,thecoefficientsofequation(25)canbedeterminedbyconsideringthefollowinginitialandfinalconditionsTheequation(26)isconstraintfunctionineveryinterval[qinit,qknot],theequation(27)isthepontesoftwosegmentsofthetrajectoryatthekeyknot.Accordingtotheconstraintconditionspresentedinequation(26),theauthorsdefineaquinticpolynomialtogenerateasequenceqattimeintervalt=[t0,t1,...,tn].SimulationStudyInsectionV,theauthorsaddressedthemethodtoplanaspiralascendingtrajectoryinCartesianspaceandJointspacerespectively,andmapintojointspaceusingintervalalgorithm.Inthissection,weutilizeanillustrativeexampletodemonstratethatthistrajectorycanberealizedinrealspacemanipulator,thespacerobotsystemhasasixDOFmanipulatorandalljointsarerotationaljoints.Moreover,thegeometricstructureisthesameasPUMArobotinordertomaketheinversekinematicssolutioneasy.Here,weassumethateachlinkofmanipulatoriscylindric.Theradiusoflinkr=0.04m.ThetableIshowsthedynamicsparametersofthespacemanipulatorsystem.Inthesimulationstudy,theauthorsusethetrigonometricsplinefunctiontoplanthedesiredtrackingtrajectoryinCartesianspace,thenchoosingthekeyknotpointsinthistrajectoryastheintervalreferencepointusingintervalalgorithm,theycalculateandselecttheinversekinematicsolutions.Finally,theyusethefiveorderpolynomialfunctiontogeneratethetrajectoryinJointspace.Accordingtodesiredangularvalue,angularvelocityfromjointtrajectorygenerator,theauthorsusetheDynamicmodelofspacemanipulatorasthecontrolobjectdesignPDcontrollertocontrolthejoint.Here,theauthorsdefinetheattitudecontrolsystemofspacerobotisoffinordertosimplifythecontrol.ThegoalofsimulationistoverifythatthespiralascendingtrajectorycanberealizedinJointspace.Theauthorsalsomeasurethecouplingforceandtorquebetweenthemanipulatorandspacebaseinordertoconfirmwhethertheattitudeandorbitcontrolsystemcancompensatetheorientationandpositiondisturbanceofthespacebase.Fig.3showsthedesiredspiralascendingtrajectoryinCartesianspace.Fig.4andFig.5showthepositionandorientationdisturbanceofthespacebasebecauseofthemotionofthespacemanipulator.Theresultsalwayskeepinasmallboundsothatthesedisturbancescanbecompensatedbytheattitudeandorbitcontrolsystem.Moreover,theorientationandpositionofthespacebasekeeptheformulamovement.Fig.6showsthejointangulardegreeafterinversekinematicsduringoperation.Fig.7showsthetorqueofthemanipulatorjointbecauseofthemotionofspacemanipulator.Allsimulationresultscanbeusedtoverifythatthetrackingtrajectoryofspacemanipulatoriseasytorealizeinfact.TableI:Parametersofspacerobotsystem:空間基地空間機械手鏈接1鏈接2鏈接3鏈接4鏈接5鏈接6質(zhì)量3002.02.02.0長度1.00.1490.4320.020.4330.020.056Ixx5080.180.030.08Iyy500.00450.03190.00430.04010.00030.0013Izz500.00450.03190.00430.04010.00030.0013Fig.3.SpiralascendingtrajectoryinCartesianspaceFig.4.PositiondisturbanceofspacebaseFig.5.OrientationdisturbanceofspacebaseFig.6.JointangulardegreeafterinversekinematicsFig.7.JointtorqueofthespacemanipulatorConclusionThispaperplansaspiralascendingtrajectoryofspacemanipulatorfortrackingandapproachingtheUSS.Oneadvantageofproposedtrajectoryistochangetherelativemotionmissiontothefixtureobjectivecapturewhentheend-effectortrackstheUSS.Thesimulationstudyverifiesthattheproposedtrajectorycanberealizedformengineeringpointofview.Approachingandcatchingtheuncontrolledsatellitehasbecomeanimportantclassoffuturespaceroboticmission.Inthispaper,theauthorspresenttheproposedtrackingtrajectoryandpreliminarywork.Inthenextphase,wewillfocusonthefollowingpartsasourfuturework(1)optimizingthistrajectory;(2)thecontactandimpactanalysisduringcapturingprocess;(3)spacerobotmotionstabilizationaftercapturingthetargetsatellite.ReferencesD.ZimpferandP.Spehar,(1996)``STS-71Shuttle/MirGNCMissionOverview,''AdvancesintheAstronauticalSciences,Vol.93,AmericanAstronauticalSociety,SanDiego,CA,1996,pp.441-460;ASSpaper96-129I.Kawano,etal.(1998),``FirstResultofAutonomousRendezvousDockingTechnologyExperimentonNASDA'sETS-VIISatellite,''IAF-98-A.3.09,49thInternatioanlAstronauticalCongress,1998.NoriyasuInaba,MitsushigeOda,(2000)AutonomousSatelliteCapturebyaSpaceRobot,ProceedingsofIEEEInternationalConferenceonRoboticsandAutomation2000.Jacobsen,S.,etal.(2002),PlanningofSafeKinematicsTrajectoriesforFree-FlyingRobotsApproachinganUncontrolledSpinningSatellite,Proc.OfASMEDETC2002,Montreal,CanadaS.DubowskyandM.A.Torres(1991),PathPlanningforSpaceManipulatortoMinimizeSpacecraftAttitudeDisturbances,Proc.ofICRA1991,pp.2522-2528.E.Papadopouls(1992),PathPlanningforSpaceManipulatorsExhibitingNonholonomicBehavior,Prof.ofIROS1992.K.yoshidaandK.Hashizume(2001),ZeroReactionManeuver:FlightVelifictionwithETS-VIISpaceRobotandExtentiontoKinematicallyRedundantArm,Proc.2001IEEEInt.Conf.onRoboticandAutomation,Seoul,Korea,2001.OmP.AgrawalandYangshengXu(1994),OntheGlobalOptimumPathPlanningforRedundantSpaceManipulators,IEEETransactiononSystem,Man,andCybernetics,Vol.24,No.9,September1994.HiroyukiNagamatus,etal.(1996),CaptureStrategyforRetrievalofaTublingSatellitebyaSpaceRoboticManipulator,Proc.ofICRA1996,Minneapolis,MinnesotaZhenghuaLuoandYoshiyukiSakawa(1990),ControlofSpaceManipulatorforCapturingaTumblingObject,Honlulu,Hawall,1990,pp.103-108.R.W.Longman,R.E.LindBerg,andM.F.Zedd(1987),Satellite-mountedRobotManipulators-NewkinematicsandReactionMomentCompensation,Int.J.RoboticsRes.,Vol.6,No.3,pp87-103,1987.Z.VafaandS.Dubowsky(1987),OntheDynamicsofManipulatorinSpaceUsingtheVirtualManipulatorApproach,Proc.ofICRA1987.YojiUmetaniandKazuyaYoshida(1989),ResolvedMotionRateControlofspacemanipulatorswithGeneralizedJacobianMatrix,IEEETransactiononRoboticsandAutomation,Vol.5No.3,June1989RobertE.Roberson(1997),RichardSchwertassek:Dynamicsofmultibodysystems,Berlin:Springer-verlag,1988JensWittenburg(1997):DynamicsofSystemsofRigidBodies,B.G.TeubnerStuttgart,1997Y.XuandT.Kanade(1992),SpaceRobotics:DynamicsandControl,KluwerAcademicPublishers,November1992,ISBN0-7929265-5.J.S.Y.Luh,M.W.WalkerandR.P.C.Paul(1980):On-LineComputationalSchemeformechanicalManipulators,Trans.ASMEJ.DynamicsSystems,MeasurementsandControl,vol120,pp.69-76,1980K.Yoshida(1997):AGeneralFormulationforUnder-ActuatedManipulators,''Proc.1997IEEE/RSJInt.Conf.onIntelligentRobotsandSystems,pp.1651-1957,Grenoble,France,1997AurelioPiazziandAntonioVisioli(1997),AGlobalOptimizationApproachtoTrajectoryPlanningforIndustrailRobots,Proc.OfIROS1997.標(biāo)題:空間機械手的跟蹤捕捉操作PanfengHuang1;YangshengXu2andBinLiang31航天大學(xué),西北工業(yè)大學(xué),中國2自動化系和計算機輔助工程師3香港中文大學(xué)、香港4深圳空間技術(shù)中心、哈爾濱開發(fā)技術(shù),中國Pfhuang@文摘:使用空間機器人拯救不受控制的旋轉(zhuǎn)的衛(wèi)星對未來的空間機器人是一個偉大的挑戰(zhàn)。本文主要提出一個空間機械臂軌跡規(guī)劃方法,它可以跟蹤、捕捉和靠近在自由浮動情況下的uss。根據(jù)uss的運動特征,我們?yōu)榭臻g機械臂來捕捉在笛卡兒空間下的uss設(shè)了螺旋上升的軌跡。然而,它是很難在這個關(guān)節(jié)空間中映射軌跡,在關(guān)節(jié)空間實現(xiàn)可行的運動,這是由于動力學(xué)奇異點和空間機器人的動力學(xué)系統(tǒng)。因此,我們利用區(qū)間算法來處理這些困難。仿真研究驗證螺旋上升軌跡可以被實現(xiàn)。此外機械手的運動是平穩(wěn)和順利的,對基地的干擾是如此有限,可以通過姿態(tài)控制來彌補它。關(guān)鍵詞:空間機械臂,跟蹤軌跡規(guī)劃算法,多項式,區(qū)間樣條函數(shù)1介紹:本文闡述了空間機械臂捕捉不受控制的旋轉(zhuǎn)的衛(wèi)星的軌跡規(guī)劃的問題。對空間機器人系統(tǒng)而言在軌捕獲在未來的空間服務(wù)中是一個巨大挑戰(zhàn)。在過去的十年中空間機器人科學(xué)取得很大進(jìn)步。因此,為了在未來的空間中降低成本,對不受控制的衛(wèi)星在軌服務(wù)將是空間機器人的主要應(yīng)用。當(dāng)人類推出了首個太空機器人并操作它完成太空任務(wù),空間機器人開始被利用在不同的空間去完成任務(wù)?,F(xiàn)在空間機器人是幫助構(gòu)建和維護(hù)國際空間站(ISS)和維修空間望遠(yuǎn)鏡。因此空間機器人對衛(wèi)星服務(wù)如救援、維修、加油是為了延長衛(wèi)星壽命和降低成本,使之成為發(fā)展空間技術(shù)中最具吸引力的地區(qū)。空間機器人有可能在衛(wèi)星維修中發(fā)揮越來越重要角色。眾所周知空間機器人、航天飛機遠(yuǎn)程機械手系統(tǒng)(SRMS或“創(chuàng)意”)(D。Zimpferpehar和p.1996]是幫助宇航員捕獲衛(wèi)星。。美國國家航空航天局ts-61任務(wù)是,sts-82,sts-103在宇航員SRMS的幫助下修復(fù)哈勃太空望遠(yuǎn)鏡。日本展示了空間機械臂捕獲一個合作性衛(wèi)星,在展示過程中通過來自于地面控制站的電視操作演示(【我。,etal。1998],[Noriyasu稻,etal,2000]。所有上面提到的空間機器人技術(shù)演示了空間機器人為空間服務(wù)的實用性。然而他們的使用僅限于捕獲合作性的衛(wèi)星。例如,斯巴達(dá)人衛(wèi)星失去控制功能和旋轉(zhuǎn)在兩個度/秒。美國國家航空航天局sts-87試圖使用1997年SRMS抓住它,而SRMS未能捕捉該衛(wèi)星。因此,有價值的不受控制的衛(wèi)星的捕獲和恢復(fù)對未來的太空機器人而言是一個艱巨的任務(wù)。幾乎所有的衛(wèi)星服務(wù)任務(wù)的發(fā)生已經(jīng)被執(zhí)行艙外活動(EVA)的宇航員用有限的空間機器人機械手的幫助所實現(xiàn)。對一個宇航員捕獲不受控制的旋轉(zhuǎn)的衛(wèi)星,它是非常昂貴和危險的。另一方面,空間機器人技術(shù)的最近越來越先進(jìn)??臻g機器人進(jìn)行這種衛(wèi)星的自動的維修任務(wù)并依靠有限的人力支持。然而,捕捉第一步是如何跟蹤和靠近目標(biāo)衛(wèi)星。斯蒂芬·雅各布森etal(雅各布森,S。,etal。(2002)]計劃安運動學(xué)軌跡飛行機器人接近一個不受控制的旋轉(zhuǎn)衛(wèi)星,他們想如何用空間機器人在工作空間通過操縱機械手來操作和捕獲uss。因此,本文假定目標(biāo)衛(wèi)星是在工作空間的空間機械臂。它是可取的為空間機械臂捕獲目標(biāo)衛(wèi)星設(shè)計一個新的跟蹤方法。到目前為止,有許多研究機器人的空間軌跡的。S和m.a.托雷斯Dubowsky[S。Dubowsky和M。a·托雷斯(1991)]解決路徑規(guī)劃使空間機械手對空間基地的干擾達(dá)到最小化。Evangelos帕帕多普洛斯(E。Papadopouls(1992)]提出了空間機械臂的非完整行為計劃路徑。Kazuya吉田和K。Hashizume[K。吉田和k.Hashizume(2001)]利用ets七世作為一個例子提供零反應(yīng)機動計劃機械手的軌跡。和YangshengOmp.阿徐(Omp.Agrawal和Yangsheng徐(1994)]介紹全球最優(yōu)路徑規(guī)劃冗余空間機械手。所有上面提到的例子使空間機器人成為研究對象,從而來研究它的本質(zhì)特征。然而,事實上只有少數(shù)研究人員的工作致力于機械手捕捉失控衛(wèi)星軌跡規(guī)劃。etal[Nagamatus欲之,etal。(1996)提出了一個由空間機器人捕獲翻滾衛(wèi)星的策略。Zhenghua羅和sakawa富野由悠季[Zhenghua羅和富野由悠季Sakawa(1990)]討論了由機械手捕獲空間翻滾對象的控制定律。因此,如何規(guī)劃可行的跟蹤方案成為越來越重要的問題。對于實例,ets機械手系統(tǒng)具有六自由度,機械手的這個六自由度基于不同空間手的軌跡規(guī)劃。2。問題公式化到目前為止捕獲在軌uss并沒有成功的例子,作為一個典型的在軌操作。在這里,作者為了描述這個問題主要假設(shè)一個捕獲操作。圖1顯示了一個跟蹤操作,其中一個空間機械手跟蹤和接近目標(biāo)衛(wèi)星。這個操作幾乎已經(jīng)解決了陸地機械操縱。然而,在空間環(huán)境中,機械操縱捕獲uss是非常困難的問題,這是因為動力學(xué)和動態(tài)奇異性的緣故,因此如果出現(xiàn)了錯誤的軌跡,那么這個錯誤就可能導(dǎo)致災(zāi)難性事件以及完全摧毀了空間機器人系統(tǒng)。另一方面,為空間機械手設(shè)計追蹤軌跡將是非常重要的問題。本文將關(guān)注這個問題。解決機器人軌跡規(guī)劃關(guān)鍵的是解決空間機械手的逆運動學(xué)問題。機械臂運動學(xué)問題的缺點正如朗文etal(R。w·朗文,r·e·林德伯格,m.f.Zedd(1987)]和Vafaetal(Z。Vafa和sDubowsky(1987)]在他們的論文中所提到的那樣,正運動學(xué)求解有顯著的困難。即,機械手末端的位置和方向沒有關(guān)閉形式的解決方案,因為他們根據(jù)空間機械手配置的變化來依靠慣性屬性。因此,歷來的的姿勢變化必須被認(rèn)為是為了汲取解決方案,所有這些問題使逆運動學(xué)變得更加困難。為了解決跟蹤軌跡問題,根據(jù)uss和空間機械手的特點本文描述了一個跟蹤軌跡的情形。在第5部分中作了詳細(xì)的討論。2.2。假設(shè)在本文中,作者假設(shè)了一個空間機器人系統(tǒng)的模型,它是由一個航天基地和一個安裝在航天基地的機器人機械臂組成。圖2顯示了一個簡單的空間機器人系統(tǒng)模型與單一機械手臂。為了澄清爭論點,他們提出了以下假設(shè)。空間機器人系統(tǒng)由n+1個與n個活動關(guān)節(jié)相聯(lián)系的鏈接組成,每個關(guān)節(jié)有一個轉(zhuǎn)動自由度(自由度),同時該關(guān)節(jié)是可控制的。該空間基地的整體位置是可控制的,而各個部位卻不是可控制的。b)沒有機械的限制和外部力量作用在空間機械臂系統(tǒng)上,即重力忽視。所以,機械系統(tǒng)的總動量是守恒的。運動學(xué)和動力學(xué)分析是在運動的慣性坐標(biāo)系統(tǒng)中進(jìn)行的。因此,空間機械手系統(tǒng)在慣性坐標(biāo)中的自由度是n+6,這是因為空間基地的姿勢有三個自由度,而空間基地的位置也有三個自由度,其中n代表了自由度數(shù)目。c)簡化如下,整個系統(tǒng)是由剛體組成,因此,空間機械臂系統(tǒng)被認(rèn)為一種由n+1剛體組成的機械鏈。d)uss的運動狀態(tài)的可以被空間機器人系統(tǒng)的傳感器估計。Uss處于旋轉(zhuǎn)狀態(tài)下的主要參數(shù)是根據(jù)uss的動力學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論