版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年廣東省肇慶聯(lián)盟校數(shù)學高二上期末經典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④2.已知函數(shù)的導函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零3.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.4.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A. B.C. D.65.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m6.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.7.復數(shù)的共軛復數(shù)的虛部為()A. B.C. D.8.用1,2,3,4這4個數(shù)字可寫出()個沒有重復數(shù)字的三位數(shù)A.24 B.12C.81 D.649.將函數(shù)圖象上所有點橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.10.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.511.已知f(x)為R上的可導函數(shù),其導函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)12.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù),滿足.若恒成立,則實數(shù)的取值范圍是______.14.已知命題“,”為假命題,則實數(shù)m的取值范圍為______15.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.16.某中學高三(2)班甲,乙兩名同學自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.18.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離19.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值20.(12分)設,分別是橢圓:的左、右焦點,的離心率為,點是上一點.(1)求橢圓的方程;(2)過點的直線交橢圓E于A,B兩點,且,求直線的方程.21.(12分)某地區(qū)2021年清明節(jié)前后3天每天下雨的概率為50%,通過模擬實驗的方法來計算該地區(qū)這3天中恰好有2天下雨的概率.用隨機數(shù)x(,且)表示是否下雨:當時表示該地區(qū)下雨,當時,表示該地區(qū)不下雨,從隨機數(shù)表中隨機取得20組數(shù)如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區(qū)清明節(jié)當天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經研究表明:從2012年至2021年,該地區(qū)清明節(jié)有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計算如果該地區(qū)2021年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數(shù)據(jù):,,,22.(10分)已知數(shù)列的前n項和為,且(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和為
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤。【題目詳解】對于①選項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A2、B【解題分析】根據(jù)導函數(shù)的圖象,得到函數(shù)的單調區(qū)間與極值點,即可判斷;【題目詳解】解:由導函數(shù)的圖象可知,當時,當時,當時,當或時,則在上單調遞增,在上單調遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B3、D【解題分析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【題目詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【題目點撥】本題考查直線與圓錐曲線的關系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題4、C【解題分析】按照空間中點到直線的距離公式直接求解.【題目詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.5、B【解題分析】設,先表示出,再利用余弦定理即可求解.【題目詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.6、A【解題分析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【題目詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A7、B【解題分析】先根據(jù)復數(shù)除法與加法運算求解得,再求共軛復數(shù)及其虛部.【題目詳解】解:,所以其共軛復數(shù)為,其虛部為故選:B8、A【解題分析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【題目詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A9、A【解題分析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【題目詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A10、C【解題分析】根據(jù)橢圓的定義,結合題意,即可求得結果.【題目詳解】設橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.11、D【解題分析】通過構造函數(shù)法,結合導數(shù)確定正確答案.【題目詳解】構造函數(shù),所以在上遞增,所以,即.故選:D12、B【解題分析】根據(jù)給定條件借助橢圓的光學性質求出直線AD的方程,進而求出點D的坐標計算作答.【題目詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學性質知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用基本不等式性質可得的最小值,由恒成立可得即可求出實數(shù)的取值范圍.【題目詳解】解:因為正數(shù),滿足,所以,當且僅當時,即時取等號因為恒成立,所以,解得.故實數(shù)的取值范圍是.故答案填:.【題目點撥】熟練掌握基本不等式的性質和正確轉化恒成立問題是解題的關鍵.14、【解題分析】根據(jù)命題的否定與原命題真假性相反,即可得到,為真命題,則,從而求出參數(shù)的取值范圍;【題目詳解】解:因為命題“,”為假命題,所以命題“,”為真命題,所以,解得;故答案:15、2【解題分析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【題目詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:16、111【解題分析】求出甲的中位數(shù)和乙的極差即得解.【題目詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:111三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解題分析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當直線l的斜率存在時,設出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當直線l的斜率存在時,設直線l的方程為,由消去y并整理得:,設,則,,,,,,要使為定值,必有,解得,此時,當直線l的斜率不存在時,由對稱性不妨令,,,當時,,即當時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【題目點撥】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)見解析;(2)【解題分析】(1)作出如圖所示空間直角坐標系,根據(jù)題中數(shù)據(jù)可得、、的坐標,利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【題目詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設,,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點到平面的距離19、(1)證明見解析(2)【解題分析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進而得CA⊥平面PAD,證得結論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,則,∴,設平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.20、(1)(2)或【解題分析】(1)按照所給的條件帶入橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新版通 用規(guī)范對設計影響交流分享
- 2025年撫順師范高等??茖W校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 山西省孝義市高三上學期入學摸底考試語文試題(含答案)
- 滬教版(上海)七年級地理第一學期中國區(qū)域篇(上)1.2《臺灣省》聽課評課記錄
- 中班幼兒系列活動策劃方案五篇
- 2025年科學儀器行業(yè)技術革新與發(fā)展前景
- 鋼材購銷合同范文年
- 代償協(xié)議與擔保合同
- 跨境貿易線上支付服務合同
- 投資公司借款的合同樣本
- 醫(yī)保政策與健康管理培訓計劃
- 無人化農場項目可行性研究報告
- 2024屆上海市金山區(qū)高三下學期二模英語試題(原卷版)
- 學生春節(jié)安全教育
- 2024-2025年校長在教研組長和備課組長會議上講話
- 宏觀利率篇:債券市場研究分析框架
- 橋梁頂升移位改造技術規(guī)范
- 六年級語文(上冊)選擇題集錦
- 《游戲界面設計專題實踐》課件-知識點5:圖標繪制準備與繪制步驟
- MOOC 材料科學基礎-西安交通大學 中國大學慕課答案
- 復產復工試題含答案
評論
0/150
提交評論