概率2-5隨機變量及其分布課件_第1頁
概率2-5隨機變量及其分布課件_第2頁
概率2-5隨機變量及其分布課件_第3頁
概率2-5隨機變量及其分布課件_第4頁
概率2-5隨機變量及其分布課件_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五節(jié)隨機變量的函數(shù)的分布問題的提出離散型隨機變量的函數(shù)的分布連續(xù)型隨機變量的函數(shù)的分布小結(jié)布置作業(yè)第五節(jié)隨機變量的函數(shù)的分布問題的提出一、問題的提出

在實際中,人們常常對隨機變量的函數(shù)更感興趣.求截面面積A=

的分布.比如,已知圓軸截面直徑d

的分布,一、問題的提出在實際中,人們常常對隨機變量的函在比如,已知t=t0

時刻噪聲電壓V

的分布,求功率

W=V2/R

(R為電阻)的分布等.在比如,已知t=t0時刻噪聲電壓V的分布,求功

設(shè)隨機變量X

的分布已知,Y=g(X)(設(shè)g是連續(xù)函數(shù)),如何由X

的分布求出

Y

的分布?下面進行討論.

這個問題無論在實踐中還是在理論上都是重要的.設(shè)隨機變量X的分布已知,Y=g(X)二、離散型隨機變量函數(shù)的分布解:當(dāng)X

取值

1,2,5時,

Y取對應(yīng)值

5,7,13,例1設(shè)X求

Y=2X+3的概率函數(shù).~而且X取某值與Y取其對應(yīng)值是兩個同時發(fā)生的事件,兩者具有相同的概率.故二、離散型隨機變量函數(shù)的分布解:當(dāng)X取值1,2,如果g(xk)中有一些是相同的,把它們作適當(dāng)并項即可.一般地,若X是離散型r.v,X的分布律為X~則

Y=g(X)~如果g(xk)中有一些是相同的,把它們作適當(dāng)一般地,如:X~則Y=X2

的分布律為:Y~如:X~則Y=X2的分布律為:Y~三、連續(xù)型隨機變量函數(shù)的分布例2設(shè)X~求Y=2X+8的概率密度.三、連續(xù)型隨機變量函數(shù)的分布例2設(shè)X~求Y=2X+8例3

設(shè)

X具有概率密度,求

Y=X2的概率密度.解設(shè)Y和X的分布函數(shù)分別為和

,例3設(shè)X具有概率密度,求Y=X2若則Y=X2

的概率密度為:若則Y=X2的概率密度為:

從上述兩例中可以看到,在求P(Y≤y)的過程中,關(guān)鍵的一步是設(shè)法從{g(X)≤y}中解出X,從而得到與{g(X)≤y}等價的X的不等式.例如,用代替{2X+8≤y}{X}用代替{X2

y}

這樣做是為了利用已知的

X的分布,從而求出相應(yīng)的概率.這是求r.v的函數(shù)的分布的一種常用方法.從上述兩例中可以看到,在求P(Y≤y)的過例4

已知隨機變量X的分布函數(shù)F(x)是嚴(yán)格單調(diào)的連續(xù)函數(shù),證明Y=F(X)服從[0,1]上的均勻分布.

下面給出一個定理,在滿足定理條件時可直接用它求出隨機變量函數(shù)的概率密度.例4已知隨機變量X的分布函數(shù)F(x)是嚴(yán)格單調(diào)的連續(xù)函數(shù),其中,X=是

y=g(x)的反函數(shù).定理

設(shè)

X是一個取值于區(qū)間[a,b],具有概率密度f(x)的連續(xù)型

r.v,又設(shè)y=g(x)處處可導(dǎo),且

是嚴(yán)格單調(diào)函數(shù)

,則Y=g(X)是一個連續(xù)型r.v.,它的概率密度為此定理的證明與前面的解題思路類似其中,X=是y=g(x)的反函數(shù)解例5

設(shè)隨機變量服從正態(tài)分布,證明

也服從正態(tài)分布.解例5設(shè)隨機變量概率2-5隨機變量及其分布ppt課件四、小結(jié)

對于連續(xù)型隨機變量,在求Y=g(X)的分布時,關(guān)鍵的一步是把事件

{g(X)≤y}

轉(zhuǎn)化為X在一定范圍內(nèi)取值的形式,從而可以利用X

的分布來求P{g(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論