版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
22.3實際問題與二次函數(shù)第二十二章二次函數(shù)
第1課時幾何圖形的最大面積復(fù)習(xí)引入
寫出下列拋物線的開口方向、對稱軸和頂點坐標(biāo),并寫出其最值.(1)y=x2-4x-5;(配方法)(2)y=-x2-3x+4.(公式法)解:(1)開口方向:向上;對稱軸:x=2;頂點坐標(biāo):(2,-9);最小值:-9;(2)開口方向:向下;對稱軸:x=;頂點坐標(biāo):(
,
);最大值:.創(chuàng)設(shè)情境溫故探新引例從地面豎直向上拋出一小球,小球的高度h(單位:m)與小球的運動時間t(單位:s)之間的關(guān)系式是h=30t-5t2(0≤t≤6).小球的運動時間是多少時,小球最高?小球運動中的最大高度是多少?二次函數(shù)與幾何圖形面積的最值t/sh/mO1234562040h=30t-5t2
可以出,這個函數(shù)的圖象是一條拋物看線的一部分,這條拋物線的頂點是這個函數(shù)的圖象的最高點.
也就是說,當(dāng)t取頂點的橫坐標(biāo)時,這個函數(shù)有最大值.合作交流探究新知
由于拋物線y=ax2
+
bx+c
的頂點是最低(高)點,
當(dāng)時,二次函數(shù)
y=ax2
+
bx+c有最小(大)值如何求出二次函數(shù)y=ax2
+
bx+c的最?。ù螅┲??合作交流探究新知小球運動的時間是
3s時,小球最高.小球運動中的最大高度是45m.t/sh/mO1234562040h=30t-5t2合作交流探究新知例
用總長為60m的籬笆圍成矩形場地,矩形面積S隨矩形一邊長l的變化而變化.當(dāng)l是多少時,場地的面積S最大?問題1
矩形面積公式是什么?典例精析問題2
如何用l表示另一邊?問題3
面積S的函數(shù)關(guān)系式是什么?范例研討運用新知例
用總長為60m的籬笆圍成矩形場地,矩形面積S隨矩形一邊長l的變化而變化.當(dāng)l是多少時,場地的面積S最大?解:根據(jù)題意得S=l(30-l),即S=-l2+30l(0<l<30).因此,當(dāng)時,S有最大值也就是說,當(dāng)l是15m時,場地的面積S最大.51015202530100200lsO范例研討運用新知變式1
如圖,用一段長為60m的籬笆圍成一個一邊靠墻的矩形菜園,墻長32m,這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少?xx60-2x問題2
我們可以設(shè)面積為S,如何設(shè)自變量?問題3
面積S的函數(shù)關(guān)系式是什么?問題4
如何求解自變量x的取值范圍?墻長32m對此題有什么作用?問題5
如何求最值?最值在其頂點處,即當(dāng)x=15m時,S=450m2.問題1
變式1與例題有什么不同?設(shè)垂直于墻的邊長為x米,S=x(60-2x)=-2x2+60x.0<60-2x≤32,即14≤x<30.范例研討運用新知變式2
如圖,用一段長為60m的籬笆圍成一個一邊靠墻的矩形菜園,墻長18m,這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少?xx60-2x問題1
變式2與變式1有什么異同?問題2
可否模仿變式1設(shè)未知數(shù)、列函數(shù)關(guān)系式?問題3
可否試設(shè)與墻平行的一邊為x米?則如何表示另一邊?答案:設(shè)矩形面積為Sm2,與墻平行的一邊為x米,則范例研討運用新知問題4
當(dāng)x=30時,S取最大值,此結(jié)論是否正確?問題5
如何求自變量的取值范圍?0<x≤18.問題6
如何求最值?由于30>18,因此只能利用函數(shù)的增減性求其最值.當(dāng)x=18時,S有最大值是378.不正確.范例研討運用新知
實際問題中求解二次函數(shù)最值問題,不一定都取圖象頂點處,要根據(jù)自變量的取值范圍.通過變式1與變式2的對比,希望同學(xué)們能夠理解函數(shù)圖象的頂點、端點與最值的關(guān)系,以及何時取頂點處、何時取端點處才有符合實際的最值.知識要點二次函數(shù)解決幾何面積最值問題的方法1.求出函數(shù)解析式和自變量的取值范圍;2.配方變形,或利用公式求它的最大值或最小值,3.檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi).
范例研討運用新知1.如圖1,用長8m的鋁合金條制成如圖的矩形窗框,那么最大的透光面積是
.2.如圖2,在△ABC中,∠B=90°,AB=12cm,BC=24cm,動點P從點A開始沿AB向B以2cm/s的速度移動(不與點B重合),動點Q從點B開始BC以4cm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),那么經(jīng)過
秒,四邊形APQC的面積最小.圖1ABCPQ圖23反饋練習(xí)鞏固新知3.某廣告公司設(shè)計一幅周長為12m的矩形廣告牌,廣告設(shè)計費用每平方米1000元,設(shè)矩形的一邊長為x(m),面積為S(m2).(1)寫出S與x之間的關(guān)系式,并寫出自變量x的取值范圍;(2)請你設(shè)計一個方案,使獲得的設(shè)計費最多,并求出這個費用.解:(1)設(shè)矩形一邊長為x,則另一邊長為(6-x),∴S=x(6-x)=-x2+6x,其中0<x<6.(2)S=-x2+6x=-(x-3)2+9;∴當(dāng)x=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化窗戶安裝與維護安全協(xié)議書4篇
- 2025年度災(zāi)害預(yù)防慈善捐贈執(zhí)行合同范本4篇
- 二零二五版旅行社環(huán)保旅游推廣合作框架協(xié)議3篇
- 二零二五年度櫥柜安裝及家居安全檢測合同4篇
- 工業(yè)互聯(lián)網(wǎng)平臺核心技術(shù)與創(chuàng)新發(fā)展方案
- 2025年度個人綠色消費貸款展期服務(wù)合同4篇
- 小學(xué)數(shù)學(xué)課堂中的合作學(xué)習(xí)與互動實踐
- 職場安全教育如何保護老年員工的財產(chǎn)安全
- 二零二五年度房地產(chǎn)項目采購人員廉潔行為規(guī)范3篇
- 2025年度個人吊車租賃合同爭議解決及仲裁協(xié)議2篇
- (八省聯(lián)考)云南省2025年普通高校招生適應(yīng)性測試 物理試卷(含答案解析)
- 調(diào)解行業(yè)可行性分析報告
- 科創(chuàng)板知識題庫試題及答案
- 《血管活性藥物靜脈輸注護理》團體標(biāo)準(zhǔn)解讀
- 護理急性支氣管炎
- NGS二代測序培訓(xùn)
- 印刷品質(zhì)量保證協(xié)議書
- GB/T 15934-2024電器附件電線組件和互連電線組件
- 營銷人員薪酬考核方案
- 2024年版的企業(yè)績效評價標(biāo)準(zhǔn)
- 2024至2030年中國it外包服務(wù)行業(yè)市場深度分析及發(fā)展趨勢預(yù)測報告
評論
0/150
提交評論