2024屆海南海口市瓊山區(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆海南??谑协偵絽^(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆海南??谑协偵絽^(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆海南海口市瓊山區(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆海南??谑协偵絽^(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆海南??谑协偵絽^(qū)國興中學數(shù)學九年級第一學期期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標系中,點、在函數(shù)的圖象上,過點分別作軸、軸的垂線,垂足為、;過點分別作軸、軸的垂線,垂足為、.交于點,隨著的增大,四邊形的面積()A.增大 B.減小 C.先減小后增大 D.先增大后減小2.如圖,△ABC中,AB=AC,∠ABC=70°,點O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°3.將拋物線向右平移一個單位,向上平移2個單位得到拋物線A. B. C. D.4.如圖,在⊙O中,AB是直徑,AC是弦,連接OC,若∠ACO=30°,則∠BOC的度數(shù)是()A.30°B.45°C.55°D.60°5.如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°6.氣象臺預報“銅陵市明天降水概率是75%”.據(jù)此信息,下列說法正確的是()A.銅陵市明天將有75%的時間降水 B.銅陵市明天將有75%的地區(qū)降水C.銅陵市明天降水的可能性比較大 D.銅陵市明天肯定下雨7.下列幾何體中,主視圖和左視圖都為矩形的是()A. B.C. D.8.王洪存銀行5000元,定期一年后取出3000元,剩下的錢繼續(xù)定期一年存入,如果每年的年利率不變,到期后取出2750元,則年利率為()A.5% B.20% C.15% D.10%9.在下列圖形中,不是中心對稱圖形的是()A. B. C. D.10.若點都是反比例函數(shù)圖像上的點,并且,則下列結(jié)論中正確的是()A. B.C.隨的增大而減小 D.兩點有可能在同一象限11.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結(jié)論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個12.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④二、填空題(每題4分,共24分)13.寫出一個以-1為一個根的一元二次方程.14.若是方程的一個根,則代數(shù)式的值是______.15.反比例函數(shù)()的圖象經(jīng)過點A,B(1,y1),C(3,y1),則y1_______y1.(填“<,=,>”)16.___________.17.將拋物線向上平移3個單位長度,再向右平移2個單位長度,所得到的拋物線解析式為______.18.如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.三、解答題(共78分)19.(8分)周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應值如下表所示:(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;(2)從你學過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關系式及自變量x的取值范圍;(3)求出銷售額W在哪一天達到最大,最大銷售額是多少元?20.(8分)某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關系如圖所示.(1)求與的函數(shù)關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.21.(8分)今年我縣為了創(chuàng)建省級文明縣城,全面推行中小學校“社會主義核心價值觀”進課堂.某校對全校學生進行了檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表和統(tǒng)計圖.請根據(jù)統(tǒng)計表和統(tǒng)計圖提供的信息,解答下列問題:(1)本次隨機抽取的樣本容量為__________;(2)統(tǒng)計表中_________,_________.(3)若該校共有學生5000人,請你估算該校學生在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù).22.(10分)如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,點D與點A關于y軸對稱,tan∠ACB=,點E、F分別是線段AD、AC上的動點,(點E不與點A,D重合),且∠CEF=∠ACB.(1)求AC的長和點D的坐標;(2)求證:;(3)當△EFC為等腰三角形時,求點E的坐標.23.(10分)在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.求(1)線段與的差值是___(2)的長度.24.(10分)已知,如圖1,在中,,,,若為的中點,交與點.(1)求的長.(2)如圖2,點為射線上一動點,連接,線段繞點順時針旋轉(zhuǎn)交直線與點.①若時,求的長:②如圖3,連接交直線與點,當為等腰三角形時,求的長.25.(12分)在平面直角坐標系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),(Ⅰ)若該拋物線與x軸的一個交點為(﹣1,0),求a的值及該拋物線與x軸另一交點坐標;(Ⅱ)不論a取何實數(shù),該拋物線都經(jīng)過定點H.①求點H的坐標;②證明點H是所有拋物線頂點中縱坐標最大的點.26.如圖,反比例函數(shù)()的圖象與一次函數(shù)的圖象交于,兩點.(1)分別求出反比例函數(shù)與一次函數(shù)的表達式.(2)當反比例函數(shù)的值大于一次函數(shù)的值時,請根據(jù)圖象直接寫出的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【分析】首先利用a和b表示出AC和CQ的長,則四邊形ACQE的面積即可利用a、b表示,然后根據(jù)函數(shù)的性質(zhì)判斷.【題目詳解】解:AC=a?2,CQ=b,則S四邊形ACQE=AC?CQ=(a?2)b=ab?2b.∵、在函數(shù)的圖象上,∴ab=k=10(常數(shù)).∴S四邊形ACQE=AC?CQ=10?2b,∵當a>2時,b隨a的增大而減小,∴S四邊形ACQE=10?2b隨a的增大而增大.故選:A.【題目點撥】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用b表示出四邊形ACQE的面積是關鍵.2、D【分析】首先根據(jù)等腰三角形的性質(zhì)可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進而可得答案.【題目詳解】解:∵AB=AC,

∴∠ABC=∠ACB=70°,

∴∠A=180°?70°×2=40°,

∵點O是△ABC的外心,

∴∠BOC=40°×2=80°,

故選:D.【題目點撥】此題主要考查了三角形的外接圓和外心,關鍵是掌握圓周角定理:在同圓或等圓中,同弧所對的圓周角等于圓心角的一半.3、B【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【題目詳解】解:將拋物線向右平移一個單位所得直線解析式為:;再向上平移2個單位為:,即.故選B.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.4、D【解題分析】試題分析:∵OA=OC,∴∠A=∠ACO=30°,∵AB是⊙O的直徑,∴∠BOC=2∠A=2×30°=60°.故選D.考點:圓周角定理.5、D【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計算即可.【題目詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【題目點撥】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.6、C【分析】根據(jù)概率表示某事情發(fā)生的可能性的大小,依次分析選項可得答案.【題目詳解】解:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:

A、銅陵市明天將有75%的時間降水,故此選項錯誤;

B、銅陵市明天將有75%的地區(qū)降水,故此選項錯誤;

C、明天降水的可能性為75%,比較大,故此選項正確;

D、明天肯定下雨,故此選項錯誤;

故選:C.【題目點撥】此題主要考查了概率的意義,關鍵是理解概率表示隨機事件發(fā)生的可能性大?。嚎赡馨l(fā)生,也可能不發(fā)生.7、A【解題分析】分別畫出各幾何體的主視圖和左視圖,然后進行判斷.【題目詳解】A、主視圖和左視圖都為矩形的,所以A選項正確;B、主視圖和左視圖都為等腰三角形,所以B選項錯誤;C、主視圖為矩形,左視圖為圓,所以C選項錯誤;D、主視圖是矩形,左視圖為三角形,所以D選項錯誤.故選:A.【題目點撥】本題考查了簡單幾何體的三視圖:畫物體的主視圖的口訣為:主、俯:長對正;主、左:高平齊;俯、左:寬相等.記住常見的幾何體的三視圖.8、D【分析】設定期一年的利率是x,則存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年則有方程[5000(1+x)﹣3000]?(1+x)=2750,解這個方程即可求解.【題目詳解】設定期一年的利率是x,根據(jù)題意得:一年時:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理兩年后是[5000(1+x)﹣3000](1+x),即方程為[5000(1+x)﹣3000]?(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合題意,故舍去),即年利率是10%.故選:D.【題目點撥】此題考查了列代數(shù)式及一元二次方程的應用,是有關利率的問題,關鍵是掌握公式:本息和=本金×(1+利率×期數(shù)),難度一般.9、C【解題分析】根據(jù)中心對稱圖形的概念,對各選項分析判斷即可得解.【題目詳解】解:A、是中心對稱圖形,故本選項不符合題意;

B、是中心對稱圖形,故本選項不符合題意;

C、不是中心對稱圖形,故本選項符合題意;

D、是中心對稱圖形,故本選項不符合題意.故選:C.【題目點撥】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、A【分析】根據(jù)反比例函數(shù)的圖象及性質(zhì)和比例系數(shù)的關系,即可判斷C,然后根據(jù)即可判斷兩點所在的象限,從而判斷D,然后判斷出兩點所在的象限即可判斷B和A.【題目詳解】解:∵中,-6<0,∴反比例函數(shù)的圖象在二、四象限,在每一象限,y隨x的增大而增大,故C錯誤;∵∴點在第四象限,點在第二象限,故D錯誤;∴,故B錯誤,A正確.故選A.【題目點撥】此題考查的是反比例函數(shù)的圖象及性質(zhì),掌握反比例函數(shù)的圖象及性質(zhì)與比例系數(shù)的關系是解決此題的關鍵.11、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側(cè)得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進行判斷;利用和不等式的性質(zhì)可對④進行判斷.【題目詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.12、C【解題分析】①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【題目詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【題目點撥】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關鍵.二、填空題(每題4分,共24分)13、答案不唯一,如【解題分析】試題分析:根據(jù)一元二次方程的根的定義即可得到結(jié)果.答案不唯一,如考點:本題考查的是方程的根的定義點評:解答本題關鍵的是熟練掌握方程的根的定義:方程的根就是使方程左右兩邊相等的未知數(shù)的值.14、9【分析】根據(jù)方程解的定義,將a代入方程得到含a的等式,將其變形,整體代入所求的代數(shù)式.【題目詳解】解:∵a是方程的一個根,∴2a2=a+3,∴2a2-a=3,∴.故答案為:9.【題目點撥】本題考查方程解的定義及代數(shù)式求值問題,理解方程解的定義和整體代入思想是解答此題的關鍵.15、>【分析】根據(jù)反比例函數(shù)的性質(zhì)得出在每個象限內(nèi),y隨x的增大而減小,圖象在第一、三象限內(nèi),再比較即可.【題目詳解】解:由圖象經(jīng)過點A,可知,反比例函數(shù)圖象在第一、三象限內(nèi),y隨x的增大而減小,由此可知y1>y1.【題目點撥】本題考查反比例函數(shù)的圖象和性質(zhì),能熟記反比例函數(shù)的性質(zhì)是解此題的關鍵.16、【分析】直接代入特殊角的三角函數(shù)值進行計算即可.【題目詳解】原式.故答數(shù)為:.【題目點撥】本題考查了特殊角的三角函數(shù)值及實數(shù)的運算,熟記特殊角的三角函數(shù)值是解題的關鍵.17、【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【題目詳解】解:將拋物線y=2x2向上平移3個單位長度,再向右平移2個單位長度后,得到的拋物線的解析式為,

故答案為:【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.18、1【解題分析】作DH⊥x軸于H,如圖,

當y=0時,-3x+3=0,解得x=1,則A(1,0),

當x=0時,y=-3x+3=3,則B(0,3),

∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D點坐標為(1,1),

∵頂點D恰好落在雙曲線y=上,

∴a=1×1=1.故答案是:1.三、解答題(共78分)19、(1);(2)(x取整數(shù));(3)第10天銷售額達到最大,最大銷售額是4500元【分析】(1)是分段函數(shù),利用待定系數(shù)法可得y與x的函數(shù)關系式;

(2)從表格中的數(shù)據(jù)上看,是成一次函數(shù),且也是分段函數(shù),同理可得p與x的函數(shù)關系式;

(3)根據(jù)銷售額=銷量×銷售單價,列函數(shù)關系式,并配方可得結(jié)論.【題目詳解】解:(1)①當時,設(),把點(0,14),(5,9)代入,得,解得:,∴;②當時,,∴(x取整數(shù));(2)∴(x取整數(shù));(3)設銷售額為元,①當時,=,∴當時,;②當時,,∴當時,;③當時,,∴當時,,綜上所述:第10天銷售額達到最大,最大銷售額是4500元;【題目點撥】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用.最大利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.20、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解題分析】(1)根據(jù)圖象利用待定系數(shù)法可求得函數(shù)解析式,再根據(jù)蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據(jù)利潤=每千克的利潤×銷售量,可得關于x的二次函數(shù),利用二次函數(shù)的性質(zhì)即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【題目詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【題目點撥】本題考查了一次函數(shù)的應用、二次函數(shù)的應用,弄清題意,找出數(shù)量間的關系列出函數(shù)解析式是解題的關鍵.21、(1)100;(2)30,0.3;(3)1500人【分析】(1)用B組的人數(shù)除以B組的頻率可以求得本次的樣本容量;(2)用樣本容量×A組的頻率可求出a的值,用C組的頻數(shù)除以樣本容量可求出b的值;(3)用5000×A組的頻率可求出在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù).【題目詳解】解:(1)本次隨機抽取的樣本容量為:35÷0.35=100,故答案為:100;(2)a=100×0.3=30,b=30÷100=0.3,故答案為:30,0.3;(3)5000×0.3=1500(人),答:達到“(優(yōu)秀)”等級的學生人數(shù)是1500人.【題目點撥】本題考查條形統(tǒng)計圖、統(tǒng)計表、樣本容量、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.22、(1)AC=20,D(12,0);(2)見解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函數(shù)和勾股定理即可求出BC、AC的長度,從而得到A點坐標,由點D與點A關于y軸對稱,進而得到D點的坐標;(2)欲證,只需證明△AEF與△DCE相似,只需要證明兩個對應角相等即可.在△AEF與△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性質(zhì)證得∠AEF=∠DCE,問題即得解決;(3)當△EFC為等腰三角形時,有三種情況,需要分類討論:①當CE=EF時,此時△AEF與△DCE相似比為1,則有AE=CD,即可求出E點坐標;②當EF=FC時,利用等腰三角形的性質(zhì)和解直角三角形的知識易求得CE,再利用(2)題的結(jié)論即可求出AE的長,進而可求出E點坐標;③當CE=CF時,可得E點與D點重合,這與已知條件矛盾,故此種情況不存在.【題目詳解】解:(1)∵四邊形ABCO為矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A點坐標為(﹣12,0),∵點D與點A關于y軸對稱,∴D(12,0);(2)∵點D與點A關于y軸對稱,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)當△EFC為等腰三角形時,有以下三種情況:①當CE=EF時,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②當EF=FC時,如圖1所示,過點F作FM⊥CE于M,則點M為CE中點,∴CE=2ME=2EF?cos∠CEF=2EF?cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③當CE=CF時,則有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此時F點與A點重合,E點與D點重合,這與已知條件矛盾.所以此種情況的點E不存在,綜上,當△EFC為等腰三角形時,點E的坐標是(8,0)或(,0).【題目點撥】本題綜合考查了矩形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、相似三角形的判定和性質(zhì)、軸對稱的性質(zhì)、三角形的外角性質(zhì)以及解直角三角形等知識,熟練掌握相似三角形的判定與性質(zhì)是解題關鍵.難點在于第(3)問,當△EFC為等腰三角形時,有三種情況,需要分類討論,注意不要漏解.23、96【分析】如圖1,延長FG交BC于H,設CE=x,則E'H'=CE=x,根據(jù)軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,表示GH,EH,BE的長,證明△EGH∽△EAB,則,可得x的值,即可求出線段、及FG的長,故可求解.【題目詳解】(1)如圖1,延長FG交BC于H,設CE=x,則E'H'=CE=x,由軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16?(9+x)=7?x,即C'D'=DF=7?x=F'G',∴FG=7?x,∴GH=9?(7?x)=2+x,EH=16?x?(9+x)=7?2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案為:9;(2)由(1)得FG=7?x=7-1=6.【題目點撥】本題考查了圖形的拼剪,軸對稱的性質(zhì),矩形、直角三角形、相似三角形等相關知識,積累了將實際問題轉(zhuǎn)化為數(shù)學問題經(jīng)驗,滲透了數(shù)形結(jié)合的思想,體現(xiàn)了數(shù)學思想方法在現(xiàn)實問題中的應用價值.24、(1);(2)①,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論