版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Pyox二次函數(shù)【區(qū)間內(nèi)】
最值及根存在問(wèn)題
吳川一中
<數(shù)學(xué)備課組>
陳智敏高三【43、44】專用【第一輪復(fù)習(xí)】人教版A
數(shù)學(xué)第一課時(shí)最值【值域】問(wèn)題例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23二次函數(shù)
例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy234–1(2)若x∈[2,4],求函數(shù)f(x)的最值;二次函數(shù)例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;y10x234–1
(3)若x∈[],函數(shù)f(x)的最值;二次函數(shù)例1、已知函數(shù)f(x)=x2–2x–3(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;
10xy234–1
(4)若x∈[],求函數(shù)f(x)的最值;
二次函數(shù)10xy234–1(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;二次函數(shù)10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
二次函數(shù)10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
二次函數(shù)10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
二次函數(shù)10xy234–1tt+2例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;(2)若x∈[2,4],求函數(shù)f(x)的最值;(3)若x∈[],求函數(shù)f(x)的最值;(4)若x∈[],求函數(shù)f(x)的最值;(5)若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
二次函數(shù)評(píng)注:例1屬于“軸定區(qū)間變”的問(wèn)題,看作動(dòng)區(qū)間沿x軸移動(dòng)的過(guò)程中,函數(shù)最值的變化,即動(dòng)區(qū)間在定軸的左、右兩側(cè)及包含定軸的變化,要注意開(kāi)口方向及端點(diǎn)情況。10xy234–1tt+2二次函數(shù)例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1二次函數(shù)例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1二次函數(shù)例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1二次函數(shù)例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.10xy2–1二次函數(shù)10xy2–110xy2–1例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.二次函數(shù)10xy2–110xy2–1例2、求函數(shù)f(x)=ax2–2a2x+1(a≠0)在區(qū)間
[–1,2]上的最值.二次函數(shù)評(píng)注:例2屬于“軸變區(qū)間定”的問(wèn)題,看作對(duì)稱軸沿x軸移動(dòng)的過(guò)程中,函數(shù)最值的變化,即對(duì)稱軸在定區(qū)間的左、右兩側(cè)及對(duì)稱軸在定區(qū)間上變化情況,要注意開(kāi)口方向及端點(diǎn)情況。10xy2–110xy2–1二次函數(shù)例3、已知函數(shù)f(x)=x2+ax+b,x∈[0,1],試確定a、b,使f(x)的值域是[0,1].10xy2–1二次函數(shù)例3、已知函數(shù)f(x)=x2+ax+b,x∈[0,1],試確定a、b,使f(x)的值域是[0,1].10xy2–1二次函數(shù)例3、已知函數(shù)f(x)=x2+ax+b,x∈[0,1],試確定a、b,使f(x)的值域是[0,1].10xy2–1二次函數(shù)例3、已知函數(shù)f(x)=x2+ax+b,x∈[0,1],試確定a、b,使f(x)的值域是[0,1].10xy2–1二次函數(shù)例3、已知函數(shù)f(x)=x2+ax+b,x∈[0,1],試確定a、b,使f(x)的值域是[0,1].10xy2–1二次函數(shù)總結(jié):求二次函數(shù)f(x)=ax2+bx+c在[m,n]上的最值或值域的一般方法是:
(2)當(dāng)x0∈[m,n]時(shí),f(m)、f(n)、f(x0)中的較大者是最大值,較小者是最小值;
(1)檢查x0=
是否屬于[m,n];(3)當(dāng)x0[m,n]時(shí),f(m)、f(n)中的較大者是最大值,較小者是最小值.二次函數(shù)再見(jiàn)二次函數(shù)Pyox二次函數(shù)【區(qū)間內(nèi)】
最值及根存在問(wèn)題
吳川一中
<數(shù)學(xué)備課組>
陳智敏高三【43、44】專用【第一輪復(fù)習(xí)】人教版A
數(shù)學(xué)第二課時(shí)實(shí)根的存在問(wèn)題【函數(shù)零點(diǎn)】一般地,對(duì)于函數(shù)y=f(x),我們把f(x)=0的實(shí)數(shù)x就做函數(shù)y=f(x)的零點(diǎn).由此得出以下三個(gè)等價(jià)結(jié)論:1.方程f(x)=0有實(shí)根2.函數(shù)y=f(x)的圖象與x軸有交點(diǎn)3.函數(shù)y=f(x)有零點(diǎn)二次函數(shù)高考!①常用②分離函數(shù)法!【實(shí)根分布問(wèn)題】
★一元二次方程:1、當(dāng)x為全體實(shí)數(shù)時(shí)的根二次函數(shù)
★一元二次方程:在某個(gè)區(qū)間上有實(shí)根,求其中字母系數(shù)的問(wèn)題稱為實(shí)根分布問(wèn)題。實(shí)根分布問(wèn)題一般考慮四個(gè)方面,即:(1)開(kāi)口方向(2)判別式(3)對(duì)稱軸(4)端點(diǎn)值的符號(hào)。2、當(dāng)x在某個(gè)范圍內(nèi)的實(shí)根分布二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(1)兩個(gè)根都小于1二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(2)兩個(gè)根都大于二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(3)一個(gè)根大于1,一個(gè)根小于1f(1)=2m-2<0
二次函數(shù)為什么?沒(méi)用△>0!!!二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(4)兩個(gè)根都在(0,2)內(nèi)二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(5)一個(gè)根小于2,一個(gè)根大于4練習(xí)及作業(yè)二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍(6)兩個(gè)根有且僅有一個(gè)在(0,2)內(nèi)f(0)f(2)=m(3m-2)<0二次函數(shù)為什么?二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(7)一個(gè)根在(-2,0)內(nèi),另一個(gè)根在(1,3)內(nèi)二次函數(shù)二次函數(shù)例:x2+(m-3)x+m=0
求m的范圍
(8)兩個(gè)正根兩根都大于0二次函數(shù)可用韋達(dá)定理表達(dá)式來(lái)書(shū)寫(xiě)條件:也可:二次函數(shù)可用韋達(dá)定理表達(dá)式來(lái)書(shū)寫(xiě)條件:二次函數(shù)也可:可用韋達(dá)定理表達(dá)式來(lái)書(shū)寫(xiě):ac<0也可:f(0)<0二次函數(shù)解:尋求等價(jià)條件例1.m為何實(shí)數(shù)值時(shí),關(guān)于x的方程(1)有實(shí)根(2)有兩正根(3)一正一負(fù)二次函數(shù)法一:設(shè)由已知得:轉(zhuǎn)變?yōu)楹瘮?shù),借助于圖像,解不等式組法二轉(zhuǎn)化為韋達(dá)定理的不等式組變式題:m為何實(shí)數(shù)值時(shí),關(guān)于x的方程有兩個(gè)大于1的根.二次函數(shù)法三:由求根公式,轉(zhuǎn)化成含根式的不等式組解不等式組,得變式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬現(xiàn)實(shí)會(huì)展用戶體驗(yàn)-洞察分析
- 用戶行為分析在插件開(kāi)發(fā)中的應(yīng)用-洞察分析
- 第08講 科學(xué)記數(shù)法、近似數(shù)(人教版)(解析版)
- 焰火污染物排放預(yù)測(cè)模型-洞察分析
- 穩(wěn)定區(qū)域劃分與優(yōu)化-洞察分析
- 安全觀察培訓(xùn)課件具體內(nèi)容與模擬案例
- 勤儉節(jié)約之星事跡簡(jiǎn)介(5篇)
- 新型城鎮(zhèn)化人口管理-洞察分析
- 藥物代謝與靶向治療-洞察分析
- 網(wǎng)絡(luò)切片安全威脅預(yù)測(cè)模型-洞察分析
- 2024年度上海浦東國(guó)際機(jī)場(chǎng)免稅店經(jīng)營(yíng)合同2篇
- 2024年度上海船舶分包建造合同2篇
- 2024-2030年中國(guó)建筑施工行業(yè)發(fā)展?fàn)顩r規(guī)劃分析報(bào)告
- 2024年家屬租房子合同范文
- 【教師成長(zhǎng)案例】教師成長(zhǎng):數(shù)字化浪潮中的破繭之路
- 2024版智能水務(wù)管理系統(tǒng)設(shè)計(jì)與施工合同3篇
- 2024年下半年山東煙臺(tái)開(kāi)發(fā)區(qū)國(guó)企業(yè)招聘130人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 華為經(jīng)營(yíng)管理-華為的股權(quán)激勵(lì)(6版)
- 學(xué)校比學(xué)趕超實(shí)施方案樣本(3篇)
- 基于2024年度人工智能的智能客服系統(tǒng)開(kāi)發(fā)合同
- 2024年度餐飲業(yè)智能點(diǎn)餐系統(tǒng)合同
評(píng)論
0/150
提交評(píng)論