版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省恒臺第一中學(xué)2023屆高三第三次模擬練習(xí)數(shù)學(xué)試題理試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.192.已知函數(shù),若函數(shù)的所有零點依次記為,且,則()A. B. C. D.3.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.4.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.85.若復(fù)數(shù)()在復(fù)平面內(nèi)的對應(yīng)點在直線上,則等于()A. B. C. D.6.函數(shù)的圖象大致為()A. B.C. D.7.已知集合A,B=,則A∩B=A. B. C. D.8.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.9.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.10.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.611.若集合,則()A. B.C. D.12.為實現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占2019年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍二、填空題:本題共4小題,每小題5分,共20分。13.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.14.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時,三棱錐的體積為__________.15.已知,(,),則=_______.16.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.19.(12分)購買一輛某品牌新能源汽車,在行駛?cè)旰螅畬⒔o予適當(dāng)金額的購車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對擬購買該品牌汽車的消費(fèi)者,就購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對購車補(bǔ)貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標(biāo);(2)若點為曲線上的動點,為線段的中點,求的最大值.21.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標(biāo).22.(10分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.2、C【解析】
令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點是將所求的式子拆分為的形式.3、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.4、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.5、C【解析】
由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.6、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當(dāng)時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.7、A【解析】
先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數(shù)軸中得出解集。8、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運(yùn)算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)9、C【解析】
對此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時,,顯然當(dāng)時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應(yīng)極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題10、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認(rèn)識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.11、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.12、B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統(tǒng)計,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進(jìn)一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學(xué)生的基本計算能力,要靈活運(yùn)用正弦定理公式及三角形面積公式,本題屬于中檔題.14、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時,等號成立.,故答案為415、【解析】
先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、0.35【解析】
根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當(dāng)時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實根,以下給出證明:記,,則關(guān)于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當(dāng)時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當(dāng)時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關(guān)于的方程不可能有三個不同的實根.【點睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.18、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.19、(1)1.7;(2),見解析;(2)2.【解析】
(1)平均數(shù)的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值的平均數(shù)的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值高于3萬元的頻率為,則,所以的分布列為,數(shù)學(xué)期望;(3)將2018年11月至2019年3月的月份數(shù)依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數(shù)據(jù)呈線性相關(guān)關(guān)系,因為,,,,則,,所以回歸直線方程為,當(dāng)時,,預(yù)計該品牌汽車在年月份的銷售量約為2萬輛.【點睛】本題考查平均數(shù)、方差的估計值、二項分布列及其期望、線性回歸直線方程及其應(yīng)用,是一個概率與統(tǒng)計的綜合題,本題是一道中檔題.20、(1),;(2).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標(biāo)是,從而,點的極坐標(biāo)是.(2)由(1)可知,點的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【點睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(1)的普通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年某品牌幼兒園室內(nèi)環(huán)保裝修施工合作合同一
- 生產(chǎn)模具課程設(shè)計論文
- 高考能力測試步步高語文基礎(chǔ)訓(xùn)練辨析修改病句(一)
- 幼兒動手做美食課程設(shè)計
- 2024年物業(yè)租賃合同:商場物業(yè)租賃合同
- 灰度變換課程設(shè)計
- 文明校園廣播稿1000字(7篇)
- 班長競選演講稿十篇資料
- 2024年特種貨物運(yùn)輸合同范本詳釋匯編3篇
- 2024年度煙酒行業(yè)碳排放管理合同3篇
- 2023-2024學(xué)年滬教版(上海)七年級數(shù)學(xué)上冊 期末復(fù)習(xí)題
- 物業(yè)管理重難點分析及解決措施
- 湖北省咸寧市通城縣2022-2023學(xué)年八年級上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(含解析)
- 3.5畝生態(tài)陵園建設(shè)項目可行性研究報告
- 國家開放大學(xué)24237丨學(xué)前兒童語言教育活動指導(dǎo)(統(tǒng)設(shè)課)期末終考題庫及答案
- 2024-2030年中國離合器制造行業(yè)運(yùn)行動態(tài)及投資發(fā)展前景預(yù)測報告
- 儲能運(yùn)維安全注意事項
- 【MOOC】信號與系統(tǒng)-北京郵電大學(xué) 中國大學(xué)慕課MOOC答案
- 客戶管理系統(tǒng)技術(shù)服務(wù)合同
- 活雞運(yùn)輸合同范例
- DB22T 277-2011 建筑電氣防火檢驗規(guī)程
評論
0/150
提交評論