![2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁(yè)](http://file4.renrendoc.com/view/4bd9ddef39aa4cec4383b40afd5ee7d4/4bd9ddef39aa4cec4383b40afd5ee7d41.gif)
![2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁(yè)](http://file4.renrendoc.com/view/4bd9ddef39aa4cec4383b40afd5ee7d4/4bd9ddef39aa4cec4383b40afd5ee7d42.gif)
![2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁(yè)](http://file4.renrendoc.com/view/4bd9ddef39aa4cec4383b40afd5ee7d4/4bd9ddef39aa4cec4383b40afd5ee7d43.gif)
![2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁(yè)](http://file4.renrendoc.com/view/4bd9ddef39aa4cec4383b40afd5ee7d4/4bd9ddef39aa4cec4383b40afd5ee7d44.gif)
![2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁(yè)](http://file4.renrendoc.com/view/4bd9ddef39aa4cec4383b40afd5ee7d4/4bd9ddef39aa4cec4383b40afd5ee7d45.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省邵陽(yáng)市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.2.設(shè)是等差數(shù)列,是其公差,是其前n項(xiàng)的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值3.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件4.已知:,直線l:,M為直線l上的動(dòng)點(diǎn),過(guò)點(diǎn)M作的切線MA,MB,切點(diǎn)為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.45.某手機(jī)上網(wǎng)套餐資費(fèi):每月流量500M以下(包含500M),按20元計(jì)費(fèi);超過(guò)500M,但沒(méi)超過(guò)1000M(包含1000M)時(shí),超出部分按0.15元/M計(jì)費(fèi);超過(guò)1000M時(shí),超出部分按0.2元/M計(jì)費(fèi),流量消費(fèi)累計(jì)的總流量達(dá)到封頂值(15GB)則暫停當(dāng)月上網(wǎng)服務(wù).若小明使用該上網(wǎng)套餐一個(gè)月的費(fèi)用是100元,則他的上網(wǎng)流量是()A.800M B.900MC.1025M D.1250M6.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺(tái) B.圓臺(tái)或兩個(gè)圓錐的組合體C.圓錐或兩個(gè)圓錐的組合體 D.圓柱7.已知雙曲線右頂點(diǎn)為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A.2 B.C. D.8.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.9.已知,分別為雙曲線:的左,右焦點(diǎn),以為直徑的圓與雙曲線的右支在第一象限交于點(diǎn),直線與雙曲線的右支交于點(diǎn),點(diǎn)恰好為線段的三等分點(diǎn)(靠近點(diǎn)),則雙曲線的離心率等于()A. B.C. D.10.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是()A.“至少有1個(gè)白球”和“都是紅球”B.“至少有2個(gè)白球”和“至多有1個(gè)紅球”C.“恰有1個(gè)白球”和“恰有2個(gè)白球”D.“至多有1個(gè)白球”和“都是紅球”11.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件12.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)P為雙曲線上任意一點(diǎn),則P滿足性質(zhì):點(diǎn)P到右焦點(diǎn)的距離與它到直線的距離之比為離心率e,若C的右支上存在點(diǎn)Q,使得Q到左焦點(diǎn)的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______14.已知圓柱軸截面是邊長(zhǎng)為4的正方形,則圓柱的側(cè)面積為_(kāi)_____________
.15.在空間直角坐標(biāo)系中,已知向量,則的值為_(kāi)_________.16.已知雙曲線,的左、右焦點(diǎn)分別為、,且的焦點(diǎn)到漸近線的距離為1,直線與交于,兩點(diǎn),為弦的中點(diǎn),若為坐標(biāo)原點(diǎn))的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知定點(diǎn),動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的軌跡為.(1)求軌跡的方程;(2)若點(diǎn)分別是圓和軌跡上的點(diǎn),求兩點(diǎn)間的最大距離.18.(12分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為(1)求橢圓的方程;(2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)且(為原點(diǎn)),求直線的斜率19.(12分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)左焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),的周長(zhǎng)為8(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)如圖,,是橢圓C的短軸端點(diǎn),P是橢圓C上異于點(diǎn),的動(dòng)點(diǎn),點(diǎn)Q滿足,,求證與的面積之比為定值20.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),若關(guān)于x的不等式恒成立,試求a的取值范圍21.(12分)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明:.22.(10分)已知橢圓的左、右焦點(diǎn)分別為,過(guò)右焦點(diǎn)作直線交于,其中的周長(zhǎng)為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題設(shè)可得,又,易知,,將問(wèn)題轉(zhuǎn)化為平面點(diǎn)線距離關(guān)系:向量的終點(diǎn)為圓心,1為半徑的圓上的點(diǎn)到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問(wèn)題轉(zhuǎn)化為求在圓上的哪一點(diǎn)時(shí),使最小,又,∴當(dāng)且僅當(dāng)三點(diǎn)共線且時(shí),最小為.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由已知確定,,構(gòu)成等邊三角形,即可將問(wèn)題轉(zhuǎn)化為圓上動(dòng)點(diǎn)到射線的距離最短問(wèn)題.2、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項(xiàng)的和的性質(zhì)可判斷每個(gè)選項(xiàng)的正誤,進(jìn)而可得正確選項(xiàng).【詳解】由可得,由可得,故選項(xiàng)B正確;由可得,因?yàn)楣?,故選項(xiàng)A正確,,所以,故選項(xiàng)C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項(xiàng)D正確;所以選項(xiàng)C不正確,故選:C3、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當(dāng)時(shí),,非充分,故A錯(cuò).當(dāng)不能推出,所以非充分,,所以是必要條件,故B正確.當(dāng)在中,,反之,故為充要條件,故C錯(cuò);當(dāng)時(shí),,,,充分條件,因?yàn)椋?dāng)時(shí)成立,非必要條件,故D錯(cuò).故選:B.4、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標(biāo)準(zhǔn)方程為:,由切線長(zhǎng)得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時(shí)與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B5、C【解析】根據(jù)已知條件列方程,化簡(jiǎn)求得小明的上網(wǎng)流量.【詳解】顯然小明上網(wǎng)流量超過(guò)了1000M但遠(yuǎn)遠(yuǎn)沒(méi)達(dá)到封頂值,假設(shè)超出部分為M,由得.故選:C6、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個(gè)圓錐的組合體:故選:C7、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因?yàn)椋?,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡(jiǎn)得故選:B8、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因?yàn)?,,所以,即,從?故選:A.9、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因?yàn)辄c(diǎn)在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題10、C【解析】結(jié)合互斥事件與對(duì)立事件的概念,對(duì)選項(xiàng)逐個(gè)分析可選出答案.【詳解】對(duì)于選項(xiàng)A,“至少有1個(gè)白球”和“都是紅球”是對(duì)立事件,不符合題意;對(duì)于選項(xiàng)B,“至少有2個(gè)白球”表示取出2個(gè)球都是白色的,而“至多有1個(gè)紅球”表示取出的球1個(gè)紅球1個(gè)白球,或者2個(gè)都是白球,二者不是互斥事件,不符合題意;對(duì)于選項(xiàng)C,“恰有1個(gè)白球”表示取出2個(gè)球1個(gè)紅球1個(gè)白球,與“恰有2個(gè)白球”是互斥而不對(duì)立的兩個(gè)事件,符合題意;對(duì)于選項(xiàng)D,“至多有1個(gè)白球”表示取出的2個(gè)球1個(gè)紅球1個(gè)白球,或者2個(gè)都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點(diǎn)睛】本題考查了互斥事件和對(duì)立事件的定義的運(yùn)用,考查了學(xué)生對(duì)知識(shí)的理解和掌握,屬于基礎(chǔ)題.11、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號(hào)不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.12、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因?yàn)?,所?故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點(diǎn)的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點(diǎn)的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.14、【解析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【詳解】由圓柱的軸截面是邊長(zhǎng)為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.15、【解析】由題知,進(jìn)而根據(jù)向量數(shù)量積運(yùn)算的坐標(biāo)表示求解即可.【詳解】解:因?yàn)橄蛄浚?,所以故答案為?6、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點(diǎn)的坐標(biāo),再求邊長(zhǎng),求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點(diǎn)到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯(cuò)誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對(duì)稱性,不妨取點(diǎn)的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)設(shè)動(dòng)點(diǎn),根據(jù)條件列出方程,化簡(jiǎn)求解即可;(2)設(shè),求出圓心到軌跡上點(diǎn)的距離,配方求最值即可得解.【小問(wèn)1詳解】設(shè)動(dòng)點(diǎn),則,,,又,∴,化簡(jiǎn)得,即,∴動(dòng)點(diǎn)的軌跡E的方程為.【小問(wèn)2詳解】設(shè),圓心到軌跡E上的點(diǎn)的距離∴當(dāng)時(shí),,∴.18、(1)(2)或【解析】(1)根據(jù)已知條件求得,由此求得橢圓方程.(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),根據(jù)列方程,化簡(jiǎn)求得直線的斜率.【小問(wèn)1詳解】設(shè)橢圓的半焦距為,依題意,,又,可得,.所以,橢圓的方程為小問(wèn)2詳解】由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立整理得,可得,代入得,進(jìn)而直線的斜率.在中,令,得,所以直線的斜率為由,得,化簡(jiǎn)得,從而所以,直線的斜率為或19、(1)(2)證明見(jiàn)解析【解析】(1)根據(jù)周長(zhǎng)為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標(biāo),根據(jù)在橢圓上,得到,然后代入Q的橫坐標(biāo)求解;方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,直線的方程為,與橢圓方程聯(lián)立,求得點(diǎn)P橫坐標(biāo),再由的直線方程聯(lián)立,得到P,Q的橫坐標(biāo)的關(guān)系求解.【小問(wèn)1詳解】解:∵的周長(zhǎng)為8,∴,即,∵離心率,∴,,∴橢圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點(diǎn),的點(diǎn),∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值420、(1)的減區(qū)間為,增區(qū)間為(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用分離參數(shù)法,結(jié)合構(gòu)造函數(shù)法以及導(dǎo)數(shù)求得的取值范圍.【小問(wèn)1詳解】當(dāng)時(shí),,,所以在區(qū)間遞減;在區(qū)間遞增.所以的減區(qū)間為,增區(qū)間為.【小問(wèn)2詳解】,恒成立.構(gòu)造函數(shù),,,構(gòu)造函數(shù),,所以在上遞增,,所以在上成立,所以,所以,即的取值范圍是.21、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見(jiàn)解析【解析】(1)當(dāng)時(shí),利用求得的單調(diào)區(qū)間.(2)將問(wèn)題轉(zhuǎn)化為證明,利用導(dǎo)數(shù)求得的最小值大于零,從而證得不等式成立.【小問(wèn)1詳解】當(dāng)時(shí),,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問(wèn)2詳解】因?yàn)?,所以,要證,只需證當(dāng)時(shí),即可.,易知在上單調(diào)遞增,又,所以,且,即,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,,所以.【點(diǎn)睛】在證明不等式的過(guò)程中,直接證明困難時(shí),可考慮證明和兩個(gè)不等式成立,從而證得成立.22、(1)(2)【解析】(1)已知焦點(diǎn)弦三角形的周長(zhǎng),以及離心率求橢圓方程,待
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境風(fēng)險(xiǎn)管理在建筑設(shè)計(jì)中的體現(xiàn)
- 物流配送網(wǎng)絡(luò)優(yōu)化策略在電子商務(wù)中的應(yīng)用
- 校園內(nèi)科學(xué)教育課程的深度探索
- 校園金融知識(shí)普及新生的理財(cái)觀念培養(yǎng)
- 游戲化營(yíng)銷電子游戲在商業(yè)推廣中的應(yīng)用
- 構(gòu)建多元科普模式促進(jìn)科學(xué)素質(zhì)提高研究
- 2024-2025學(xué)年高中生物 第6章 生態(tài)環(huán)境的保護(hù) 第1節(jié) 人口增長(zhǎng)對(duì)生態(tài)環(huán)境的影響說(shuō)課稿 新人教版必修3
- 2023八年級(jí)數(shù)學(xué)上冊(cè) 第15章 軸對(duì)稱圖形與等腰三角形15.1 軸對(duì)稱圖形第1課時(shí) 軸對(duì)稱圖形說(shuō)課稿 (新版)滬科版
- Unit5 Colours(說(shuō)課稿)-2024-2025學(xué)年人教新起點(diǎn)版英語(yǔ)一年級(jí)上冊(cè)
- 2023六年級(jí)英語(yǔ)上冊(cè) Review Module Unit 1說(shuō)課稿 外研版(三起)001
- 重大事故隱患判定標(biāo)準(zhǔn)與相關(guān)事故案例培訓(xùn)課件(建筑)
- DZ/T 0430-2023 固體礦產(chǎn)資源儲(chǔ)量核實(shí)報(bào)告編寫規(guī)范(正式版)
- (高清版)WST 442-2024 臨床實(shí)驗(yàn)室生物安全指南
- 歷史時(shí)間軸全
- 高速行業(yè)網(wǎng)絡(luò)安全與維護(hù)
- (2024年)房地產(chǎn)銷售人員心態(tài)培訓(xùn)
- T-BJCC 1003-2024 首店、首發(fā)活動(dòng)、首發(fā)中心界定標(biāo)準(zhǔn)
- 外科手術(shù)及護(hù)理常規(guī)
- 出口潛力分析報(bào)告
- 大美陜西歡迎你-最全面的陜西省簡(jiǎn)介課件
- 三位數(shù)減三位數(shù)的減法計(jì)算題 200道
評(píng)論
0/150
提交評(píng)論